Köglmayr, Daniel und Räth, Christoph (2024) Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning. Scientific Reports. Nature Publishing Group. doi: 10.1038/s41598-023-50726-9. ISSN 2045-2322.
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Offizielle URL: https://www.nature.com/articles/s41598-023-50726-9
Kurzfassung
Model-free and data-driven prediction of tipping point transitions in nonlinear dynamical systems is a challenging and outstanding task in complex systems science. We propose a novel, fully data-driven machine learning algorithm based on next-generation reservoir computing to extrapolate the bifurcation behavior of nonlinear dynamical systems using stationary training data samples. We show that this method can extrapolate tipping point transitions. Furthermore, it is demonstrated that the trained next-generation reservoir computing architecture can be used to predict non-stationary dynamics with time-varying bifurcation parameters. In doing so, post-tipping point dynamics of unseen parameter regions can be simulated.
elib-URL des Eintrags: | https://elib.dlr.de/201955/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Extrapolating tipping points and simulating non-stationary dynamics of complex systems using efficient machine learning | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 4 Januar 2024 | ||||||||||||
Erschienen in: | Scientific Reports | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Ja | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1038/s41598-023-50726-9 | ||||||||||||
Verlag: | Nature Publishing Group | ||||||||||||
ISSN: | 2045-2322 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Tipping Points, Nonlinear Dynamics, AI predictions, Reservoir Computing | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||
Standort: | Ulm | ||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||
Hinterlegt von: | Köglmayr, Daniel | ||||||||||||
Hinterlegt am: | 12 Jan 2024 16:00 | ||||||||||||
Letzte Änderung: | 29 Jan 2024 13:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags