Jahan, Kanwal and Lähns, Alexander and Baasch, Benjamin and Heusel, Judith and Roth, Michael (2024) Rail Surface Defect Detection and Severity Analysis Using CNNs on Camera and Axle Box Acceleration Data. In: Lecture Notes in Mechanical Engineering, pp. 423-435. Springer. 7th International Congress and Workshop on Industrial AI and eMaintenance, IAI 2023, 2023-06-13 - 2023-06-15, Luleå, Schweden. doi: 10.1007/978-3-031-39619-9_31. ISBN 978-303038076-2. ISSN 2195-4356.
![]() |
PDF
1MB |
Official URL: https://link.springer.com/chapter/10.1007/978-3-031-39619-9_31
Abstract
Rail surface defect detection is a relevant problem in the field of data-driven railway maintenance. Artificial intelligence and neural networks (NN) for axle box acceleration (ABA) or camera data show great potential for defect detection and classification. However, a sufficient amount of labeled training data is required, all the more if the defect severity is to be estimated. A unique dataset of time-synchronized ABA and camera data is employed that contains labeled defect instances. For the image analysis, RetinaNet as a single-stage object detector (with the backbone of ResNet-50 and a feature pyramid network) is used to achieve high classification performance for the two most common rail surface defects (squat and corrugation). Additionally, a machine learning-based method on ABA data to estimate defect severity levels (low, medium, heavy) is proposed. False positives are detected in the original labels by both classifiers during evaluation. The inspection of the false positives in image data reveals that defects have been overlooked in the initial labeling. The insights of this work help to reduce the dependency on labeled data by using only a few labeled samples and by exploiting complementary data sources instead of increasing the number of labeled instances.
Item URL in elib: | https://elib.dlr.de/201722/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Rail Surface Defect Detection and Severity Analysis Using CNNs on Camera and Axle Box Acceleration Data | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 1 January 2024 | ||||||||||||||||||||||||
Journal or Publication Title: | Lecture Notes in Mechanical Engineering | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1007/978-3-031-39619-9_31 | ||||||||||||||||||||||||
Page Range: | pp. 423-435 | ||||||||||||||||||||||||
Publisher: | Springer | ||||||||||||||||||||||||
Series Name: | Lecture Notes in Mechanical Engineering | ||||||||||||||||||||||||
ISSN: | 2195-4356 | ||||||||||||||||||||||||
ISBN: | 978-303038076-2 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Deep learning, Convolutional neural network, Time-synchronized dataset, Supervised learning, Severity analysis, Rail surface defects Squats, Corrugation | ||||||||||||||||||||||||
Event Title: | 7th International Congress and Workshop on Industrial AI and eMaintenance, IAI 2023 | ||||||||||||||||||||||||
Event Location: | Luleå, Schweden | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 13 June 2023 | ||||||||||||||||||||||||
Event End Date: | 15 June 2023 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Rail Transport | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V SC Schienenverkehr | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - TraCo - Train Control and Management (old) | ||||||||||||||||||||||||
Location: | Berlin-Adlershof , Braunschweig | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Transportation Systems > Information Gathering and Modelling, BA Institute of Transportation Systems > Information Gathering and Modelling, BS | ||||||||||||||||||||||||
Deposited By: | Baasch, Dr. Benjamin | ||||||||||||||||||||||||
Deposited On: | 29 Jan 2024 09:56 | ||||||||||||||||||||||||
Last Modified: | 18 Feb 2025 09:41 |
Repository Staff Only: item control page