Golendukhina, Valentina und Sonnleithner, Lisa und Felderer, Michael (2023) Enhancing Data Quality in Large-Scale Software Systems for Industrial Automation. In: Proceedings of the 3rd International Workshop on Software Engineering and AI for Data Quality in Cyber-Physical Systems/Internet of Things, Co-located with: ESEC/FSE 2023, Seiten 5-8. 3rd International Workshop on Software Engineering and AI for Data Quality in Cyber-Physical Systems/Internet of Things, 2023-12-04, San Francisco, USA. doi: 10.1145/3617573.3618028. ISBN 979-840070378-2.
PDF
170kB |
Offizielle URL: https://dx.doi.org/10.1145/3617573.3618028
Kurzfassung
Modern industrial systems have become highly automated and data-driven, generating large volumes of data through sophisticated machinery. However, the quality of the collected data is not always optimal, whereas monitoring data quality is challenging due to real-time data constraints. While significant research has been done on data validation of the exported and prepared data, there is no research on implementing data quality practices with programming languages and tools that directly interact with hardware in the domain of cyber-physical production systems (CPPSs), such as IEC 61499 and IEC 61131-3, i.e., software on level 1 of the automation pyramid. By examining a plant-building company, this short paper explores the challenges and opportunities for data quality management at L1 including knowledge transfer, data compression, and metadata formulation, and suggests possible data validation techniques.
elib-URL des Eintrags: | https://elib.dlr.de/201695/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Enhancing Data Quality in Large-Scale Software Systems for Industrial Automation | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2023 | ||||||||||||||||
Erschienen in: | Proceedings of the 3rd International Workshop on Software Engineering and AI for Data Quality in Cyber-Physical Systems/Internet of Things, Co-located with: ESEC/FSE 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1145/3617573.3618028 | ||||||||||||||||
Seitenbereich: | Seiten 5-8 | ||||||||||||||||
ISBN: | 979-840070378-2 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Data Quality Software Systems Industrial Automation | ||||||||||||||||
Veranstaltungstitel: | 3rd International Workshop on Software Engineering and AI for Data Quality in Cyber-Physical Systems/Internet of Things | ||||||||||||||||
Veranstaltungsort: | San Francisco, USA | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsdatum: | 4 Dezember 2023 | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [DAT], R - Software Engineering und Qualitätssicherung (SeQu) | ||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie | ||||||||||||||||
Hinterlegt von: | Felderer, Michael | ||||||||||||||||
Hinterlegt am: | 11 Jan 2024 12:49 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags