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ABSTRACT

Modern industrial systems have become highly automated and

data-driven, generating large volumes of data through sophisti-

cated machinery. However, the quality of the collected data is not

always optimal, whereas monitoring data quality is challenging due

to real-time data constraints. While signi�cant research has been

done on data validation of the exported and prepared data, there is

no research on implementing data quality practices with program-

ming languages and tools that directly interact with hardware in

the domain of cyber-physical production systems (CPPSs), such as

IEC 61499 and IEC 61131-3, i.e., software on level 1 of the automa-

tion pyramid. By examining a plant-building company, this short

paper explores the challenges and opportunities for data quality

management at L1 including knowledge transfer, data compression,

and metadata formulation, and suggests possible data validation

techniques.

CCS CONCEPTS

• Software and its engineering→ Software veri�cation and

validation.

KEYWORDS

data quality, cyber-physical production system, IEC 61499

ACM Reference Format:

Valentina Golendukhina, Lisa Sonnleithner, and Michael Felderer. 2023.

Enhancing Data Quality in Large-Scale Software Systems for Industrial

Automation. In Proceedings of the 3rd International Workshop on Software

Engineering and AI for Data Quality in Cyber-Physical Systems/Internet of

Things (SEA4DQ ’23), December 4, 2023, San Francisco, CA, USA. ACM, New

York, NY, USA, 4 pages. https://doi.org/10.1145/3617573.3618028

1 INTRODUCTION

Modern industrial systems have undergone a signi�cant transfor-

mation, becoming highly automated and data-driven. Equipped

with an extensive array of sensors and sophisticated machinery,

these systems generate and accumulate vast amounts of data. Such

data plays a critical role in facilitating decision-making processes,

ensuring safety and security, and optimizing operational e�ciency.
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However, the quality of the collected data is not always optimal,

posing challenges for e�ective utilization. Hardware issues, proxim-

ity to magnetic �elds, and incorrect settings can potentially corrupt

the data [12]. Furthermore, maintaining and monitoring data qual-

ity is challenging due to the large amount of data exchanged close

to real-time and the changing and noisy operational environments

in which these systems are typically deployed [10].

According to the automation pyramid, data is collected and man-

aged at four levels [1]. The initial level (L1) involves the software

that directly interacts with the hardware con�gurations of sensors

within a system via programmable logic controllers (PLCs). The

higher processing level (L2) represents a more advanced system

equipped with enhanced computational capabilities to handle data

monitoring and supervision. The third and fourth levels (L3 and L4)

focus on data management, optimization, and business planning.

Signi�cant research e�orts are dedicated to data validation at L3

and L4, some practices are implemented at L2. These stages have

more computational power to ensure the accuracy, consistency, and

reliability of the processed data and enable various techniques in-

cluding machine learning-based data mining techniques, statistical

outlier detection methods, and various mathematical models [2].

However, addressing certain issues at L1 can potentially contribute

to improving data quality, but was not investigated in detail. By

implementing e�ective strategies at this level, the amount of un-

necessary or redundant data transmitted can be minimized. This,

in turn, results in substantial savings in terms of computational

and storage capacities, as well as reducing the workload for data

analysts involved in data cleaning tasks.

This paper explores the challenges associated with data qual-

ity in large industrial systems that can be potentially addressed

on L1, focusing on the framework provided by the International

Electrotechnical Commission (IEC) 61499/61131-3 [6]. IEC 61131-3

de�nes programming languages for PLCs and is widely spread in the

domain of industrial automation. IEC 61499 extends IEC 61131-3 to

provide means for modeling distributed control systems. By examin-

ing the current challenges and opportunities for data validation, we

aim to enhance the understanding of data quality management at

L1 and propose potential solutions within the context of large-scale

industrial systems.

The remaining sections of the paper are structured as follows.

Section 2 describes the IEC standard, its application, and research

on data quality in the industrial domain. Section 3 presents the

research setting and discovered data quality challenges. In Section

4, we discuss the implications for data quality improvement. Finally,

Section 5 concludes the paper with the future work.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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2 BACKGROUND

2.1 IEC 61131-3 and IEC 61499

IEC 61131-3 [5] is a standard that describes �ve languages for PLC

programming. Instruction List (IL) is a textual language that is

similar to assembly. Structured Text (ST) is also a textual language

that is syntactically similar to Pascal. Ladder Diagram (LD) is a

graphical language that resembles a circuit diagram. Sequential

Function Chart (SFC) is another graphical language that is similar

to a state machine. The �fth language, Function Block Diagram

(FBD), is a graphical language too. The Continuous Function Chart

(CFC), is not o�cially part of IEC 61131-3. It is an adapted version of

the FBD. The Function Blocks can be programmed in any language

de�ned in IEC 61131-3.

IEC 61499 [6] de�nes a domain-speci�c modeling language for

distributed control systems. It extends IEC 61131-3 and provides

improved encapsulation of the software for increased reusability

of software components. It also provides a vendor-independent

format to improve portability and interoperability. The language is

block-based and follows an event-based execution order. Function

Blocks (FBs) can contain a state machine, can be programmed in

any textual language (usually ST) or encapsulate other FBs.

PLCs are mainly programmed with the languages de�ned by

IEC 61131-3, and IEC 61499 is in the phase of early adopters [8]. In

the context of the automation pyramid, PLC software is on Level 1

(L1). It directly interacts with the hardware (e.g., sensors that send

data) and forwards certain information to higher level software on

L2, see Figure 1.

L1 PLC (IEC 61499/61131-3)

Higher level softwareL2

Sensors

Figure 1: Levels 1 and 2 of automation pyramid

2.2 Data Quality

Since data quality is a crucial factor for the correct functioning

of modern systems, a lot of work has been done to address data

quality issues. Alwan et al. linked all data quality challenges in large-

scale cyber-physical systems to three root causes: incorrect sensors’

measurements, hardware failures of sensors or communication

networks, and mismatches in spatial and temporal attributes [2].

There is a large number of methodologies available in the litera-

ture for evaluating and enhancing data quality focusing on technical

aspects [3]. Some approaches concentrate on statistically assessing

the quality of data, employing statistical and machine learning tech-

niques to identify anomalies or inconsistencies within datasets [11].

Other approaches prioritize the evaluation of data sources them-

selves, aiming to predict the quality of the resulting data based on

characteristics of the sources [4] or evaluate the data based on data

provenance techniques by analyzing every step of data generation

and transformation [7].

All described techniques are currently applied in the data anal-

ysis at L2 and higher. To the best of our knowledge, there is no

research done to understand the applicability and application po-

tential of data quality techniques at L1.

3 CASE STUDY

To analyze the current state of practice regarding data quality prac-

tices implemented on L1, we conducted two semi-structured in-

terviews with two experts (a senior developer and a senior team

lead, both with more than 10 years of experience in the domain)

from an internationally operating large plant-building company.

The interviews were held online and took 1 - 1.5 hour each. During

the interviews, we explored the following topics:

• Description of sensors

• Description of the raw data from sensors on L1

• Description of data processing procedures on L1

• Description of the data sent to L2

• Current problems with sensors

• The procedure of data issues detection on L1 and L2

As a result, we could understand the company’s setting and

explore the challenges they face in practice. Following the the-

matic content analysis method, we distinguished three groups of

challenges that are described in the following sections.

3.1 Industrial Setting

The company mainly uses CFC (block-based, graphical) and ST (tex-

tual) to program their control software. They utilize a combination

of digital and analog sensors to monitor and control various aspects

of a plant’s equipment and processes.

For digital sensors, the company employs limit switches to detect

the movement and position of equipment. These switches can be

mechanical or electronic, such as inductive sensors commonly used

in plants. They provide binary signals (0 or 1) and are primarily used

to stop machine movement or indicate speci�c positions. Quality

control is not integrated into these limit switches, so a broken wire

would result in a 0 signal. Additionally, fail-safe limit switches are

utilized in restricted areas, such as safe locks or tools. These sensors

continuously check for wire breaks and promptly switch o� the

equipment when detected.

In addition to digital sensors, the company employs analog sen-

sors to measure temperature, pressure, and gas �ow. These sensors

provide results typically within a 4mA to 20mA range. If the mea-

surement falls below 4mA, it indicates a sensor fault or a wire break.

An external sensor vendor organization de�nes the thresholds for

normal and abnormal sensor functioning.

After receiving the raw values from the sensors, the data is sent

to a programmable logic controller (PLC) for further processing. To

convert the raw values into meaningful process values, a special

function block is employed. This function block applies transfor-

mations based on prede�ned mappings or calculations, converting

the raw value into units such as bars, millibars, or degrees, depend-

ing on the speci�c measurement parameters. The range for these

process values is determined in collaboration with domain experts.

3.2 Challenges

We identi�ed three groups of data quality-related challenges that

could be potentially addressed on L1.
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3.2.1 Data Volume. A complete plant generates approximately

10,000 information values that need to be stored at a high frequency,

up to every 4 to 10 milliseconds. Handling such a massive in�ux of

data presents signi�cant data compression and storage challenges.

When transmitting the data to L2, data compression becomes

a crucial step to manage the immense data volume e�ciently. L2

focuses on identifying relevant information such as peak values

and critical data points during plant startup and shutdown, rather

than continuous �uctuations. By compressing the data, they aim

to save storage space while retaining critical data points relevant

to these events. However, this compression strategy introduces

the challenge of initially sending all data points to L2, demanding

signi�cant computational and storage resources for adequate data

transportation and processing.

At L1, several functions are suitable to gather and analyze data,

including functions like minimum, maximum, and average calcula-

tions. They could enable quick identi�cation of peaks and search of

crucial data points. However, compression functions are not directly

employed on L1 due to concerns about potential data loss. Compres-

sion techniques adapted to L1 that ensure minimal data loss while

achieving signi�cant storage savings is of interest within L1 data

management. This could optimize data quality while addressing

storage and network limitations in modern industrial systems.

3.2.2 Metadata Formulation. Each signal gathered at Level 1 (L1)

of the automation pyramid comprises diverse metadata. Despite

the importance of it for data interpretation, the e�ectiveness of

metadata practices at L1 varies.

The whole automation system is time synchronized enabling ac-

cess to historical data of each sensor for up to one or two years based

on project speci�cations. Additionally, deviations and prede�ned

events are recorded in the alarm system. Each alarm occurrence is

stored with a corresponding timestamp and description. However,

one limitation arises from the absence of information about the

quality of time synchronization. In cases where di�erent sensors

become asynchronous, accurately discerning the precise events

and their sequence becomes challenging, potentially impacting the

ability to thoroughly analyze and understand the causes and e�ects

of alarms and achieve the best optimization.

While date-time synchronization continues to be a signi�cant

challenge in industrial data analysis, in certain sectors, where pre-

cise timing is of paramount importance, more robust approaches to

time synchronization are adopted but it is not a standard practice.

Another possible problem of metadata management is that the

data structure does not inherently store measurement units, neces-

sitating the need to maintain this information externally.

To mitigate this issue, the measurement units are de�ned and

assigned at the project’s launch and then displayed in HMI (human-

machine interface) at L2 indicating the appropriate unit. Document-

ing this information is essential since di�erent clients use di�erent

measurement units. For instance, the measurement unit for pres-

sure is standardized in the International System of Units (SI) as

pascal (Pa) but European clients may prefer measurements in the

non-SI unit bar (1 Pa = 10
−5

bar), while US projects normally utilize

PSI (pounds per square inch) (1 Pa = 1.4504 · 10
−4 PSI). However,

there is no indication of measurement units at L1 which could lead

to the inability to read the unit and the process value directly from

sensors and other unexpected issues such as misinterpretation of

values or insu�cient documentation at L1.

Another current issue is the transparency of substitute values. If

a sensor or a wire breaks, the need to maintain continuous process

operations requires the use of substitute values. These substitute

values are temporary placeholders to keep the process running

smoothly until the sensor or wire is repaired or replaced. To ensure

that these substitute values are properly handled and considered

in the data management process, it is crucial to communicate their

status and signi�cance clearly between L1 and L2.

At the L1 level, when a substitute value is activated, it is essential

to include clear metadata indicating its status and the reason for

its use. This information can be stored and documented within the

data structure itself. By doing so, the L2 process model and HMI

systems can be made aware of the substitution and interpret the

data correctly. Otherwise, L2 may treat the substitute values as

normal process data leading to potential issues in data analysis.

3.2.3 Knowledge Transfer. Problems with knowledge transfer can

further compound the challenges in data quality within large-scale

software systems for industrial automation. As projects evolve over

time, teams may change, and valuable knowledge about the data

structure, metadata conventions, and best practices can be lost. Ad-

ditionally, new team members may overlook important metadata,

or misinterpreting the signi�cance of certain values, including sub-

stitute values. Global knowledge transfer is an especially urgent

problem in the domain of industrial systems, where the vendors

provide and install the systems, but the runtime maintenance in

the next years is the responsibility of customers.

Understanding how customers conduct maintenance work, the

frequency of clean-ups, and the planning process would be bene�-

cial for creating an e�ective diagnostic system that can learn from

their experiences and provide valuable insights. Potentially, this

knowledge could be incorporated into L2 for process optimization

or as an add-on to L1 and could bridge the gap between process

optimization and control. By having access to detailed maintenance

data, the system could o�er tailored recommendations, predictive

maintenance schedules, and performance improvements, resulting

in more e�cient operations and reduced downtime.

However, customers are often unwilling to share such informa-

tion because of concerns about the protection of their proprietary

knowledge. As a result, there is a delicate balance between pro-

viding valuable insights to customers while encouraging them to

contribute feedback to enhance the system further.

4 DISCUSSION

In the industrial domain, the focus on communication protocols

and interoperability often leaves a gap when it comes to explicitly

addressing data quality requirements. Monostori describes several

challenges of CPPS including operating sensor networks, handling

big bulks of data, information retrieval, representation, and interpre-

tation, and security aspects [9]. Notably, a part of these challenges

pertains directly to data and can be addressed at L1 thus increas-

ing �exibility and productivity due to the implementation at the

shortest distance to the signal initiators [13].

One possible solution is the creation of exemplary FBs (or reusable

software components in general). Such standardized components
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would encapsulate best practices and methodologies for maintain-

ing data quality, granting users greater autonomy and �exibility

to customize data quality measures to their needs. This approach

might empower organizations to implement e�ective data qual-

ity strategies and promotes a more standardized and customizable

framework for managing and improving data quality in diverse

contexts. Due to the computational limitations, L1 is often not con-

sidered as a solution for higher complexity data issue problems.

Nonetheless, there are successful attempts to implement complex

mathematical models at L1 [13]. The question is how already exist-

ing ready-to-use basic building blocks can be applied for it.

Furthermore, data �ow visualization at L1 can be bene�cial for

the identi�cation of data issues. By implementing intuitive and

informative visualizations, operators and analysts can gain better

insights into the data �ow and identify potential issues despite the

high data volumes including data anomalies and bottlenecks.

E�cient metadata is another challenge to be addressed not only

with standardization but also by increasing adaptability and respon-

siveness to current needs. For instance, when dealing with metadata

for a temperature sensor, essential informationmay encompass date

and time of the measurement, the temperature unit used (e.g., de-

gree Celsius or degree Fahrenheit), details regarding the sensor’s

calibration, and speci�c equipment or location data. However, the

metadata framework must be �exible and subject to change, based

on the insights and expertise of domain-speci�c experts. By em-

bracing a dynamic approach to metadata management, industries

can e�ectively tailor their metadata requirements to suit unique

contexts and evolving technologies, empowering them to make

data-driven decisions that lead to improved operational e�ciency

and enhanced overall performance.

Addressing data quality issues at the L1 o�ers a signi�cant advan-

tage in terms of speed of reaction and problem-solving in industrial

automation. L1’s direct access to sensor data allows for swift identi-

�cation and troubleshooting, minimizing downtime and disruptions.

In contrast, the higher-level L2 focuses on optimization and may

not have real-time visibility into sensor values, potentially leading

to delays in issue detection. Prioritizing data quality at L1 ensures

reliable information is passed to L2, facilitating better decision-

making and improving overall system reliability and e�ciency. The

optimal solution would be data quality measures integration at both

levels resulting in a comprehensive framework for managing and

optimizing data quality in industrial automation.

Data quality requirements indeed exhibit variations across dif-

ferent industrial domains, with certain elements assuming greater

importance in speci�c sectors. Although various industries have

developed e�ective practices, the real challenge lies in collecting

and sharing this knowledge. The reluctance to disclose proprietary

information creates barriers to collaboration and impedes the estab-

lishment of comprehensive best practices andmetadata frameworks.

To progress in this area, fostering cross-industry learning and coop-

eration is vital, enabling the development of standardized metadata

frameworks that can bene�t all. However, the willingness of devel-

opers to participate in knowledge-sharing practices remains a key

obstacle that must be addressed to achieve a more uni�ed approach

to metadata management across diverse industrial domains.

5 CONCLUSION

In this paper, we describe the issues observed in practice in a plant-

building company that can be addressed at L1 including data com-

pression, metadata formation, and knowledge transfer issues. Based

on the identi�ed areas, future work should focus on several areas.

Firstly, research e�orts can be directed toward the development

and implementation of FBs focusing on data quality validation

and lossless data compression. Secondly, the creation of standard-

ized metadata frameworks that cater to diverse industrial domains

and facilitate seamless data sharing and interoperability remains a

critical problem. Additionally, promoting knowledge sharing and

collaboration among stakeholders can help overcome the challenges

related to knowledge transfer, encouraging customers to contribute

valuable insights and feedback for continuous improvement.
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