Durán, Francisco und Martínez-Fernández, Silverio und Felderer, Michael und Franch, Xavier (2023) Guiding the retraining of convolutional neural networks against adversarial inputs. PeerJ Computer Science, 9, e1454. PeerJ. doi: 10.7717/peerj-cs.1454. ISSN 2376-5992.
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Offizielle URL: https://peerj.com/articles/cs-1454/
Kurzfassung
Background When using deep learning models, one of the most critical vulnerabilities is their exposure to adversarial inputs, which can cause wrong decisions (e.g., incorrect classification of an image) with minor perturbations. To address this vulnerability, it becomes necessary to retrain the affected model against adversarial inputs as part of the software testing process. In order to make this process energy efficient, data scientists need support on which are the best guidance metrics for reducing the adversarial inputs to create and use during testing, as well as optimal dataset configurations. Aim We examined six guidance metrics for retraining deep learning models, specifically with convolutional neural network architecture, and three retraining configurations. Our goal is to improve the convolutional neural networks against the attack of adversarial inputs with regard to the accuracy, resource utilization and execution time from the point of view of a data scientist in the context of image classification. Method We conducted an empirical study using five datasets for image classification. We explore: (a) the accuracy, resource utilization, and execution time of retraining convolutional neural networks with the guidance of six different guidance metrics (neuron coverage, likelihood-based surprise adequacy, distance-based surprise adequacy, DeepGini, softmax entropy and random), (b) the accuracy and resource utilization of retraining convolutional neural networks with three different configurations (one-step adversarial retraining, adversarial retraining and adversarial fine-tuning). Results We reveal that adversarial retraining from original model weights, and by ordering with uncertainty metrics, gives the best model w.r.t. accuracy, resource utilization, and execution time. Conclusions Although more studies are necessary, we recommend data scientists use the above configuration and metrics to deal with the vulnerability to adversarial inputs of deep learning models, as they can improve their models against adversarial inputs without using many inputs and without creating numerous adversarial inputs. We also show that dataset size has an important impact on the results.
elib-URL des Eintrags: | https://elib.dlr.de/201685/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Guiding the retraining of convolutional neural networks against adversarial inputs | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 8 August 2023 | ||||||||||||||||||||
Erschienen in: | PeerJ Computer Science | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 9 | ||||||||||||||||||||
DOI: | 10.7717/peerj-cs.1454 | ||||||||||||||||||||
Seitenbereich: | e1454 | ||||||||||||||||||||
Verlag: | PeerJ | ||||||||||||||||||||
ISSN: | 2376-5992 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Neural networks Software testing Deep learning Adversarial inputs Green AI | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Software Engineering und Qualitätssicherung (SeQu), D - Kurzstudien [KIZ] | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie | ||||||||||||||||||||
Hinterlegt von: | Felderer, Michael | ||||||||||||||||||||
Hinterlegt am: | 04 Jan 2024 08:33 | ||||||||||||||||||||
Letzte Änderung: | 29 Jan 2024 12:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags