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ABSTRACT
Background: When using deep learning models, one of the most critical
vulnerabilities is their exposure to adversarial inputs, which can cause wrong
decisions (e.g., incorrect classification of an image) with minor perturbations. To
address this vulnerability, it becomes necessary to retrain the affected model against
adversarial inputs as part of the software testing process. In order to make this
process energy efficient, data scientists need support on which are the best guidance
metrics for reducing the adversarial inputs to create and use during testing, as well as
optimal dataset configurations.
Aim: We examined six guidance metrics for retraining deep learning models,
specifically with convolutional neural network architecture, and three retraining
configurations. Our goal is to improve the convolutional neural networks against the
attack of adversarial inputs with regard to the accuracy, resource utilization and
execution time from the point of view of a data scientist in the context of image
classification.
Method: We conducted an empirical study using five datasets for image
classification. We explore: (a) the accuracy, resource utilization, and execution time
of retraining convolutional neural networks with the guidance of six different
guidance metrics (neuron coverage, likelihood-based surprise adequacy, distance-
based surprise adequacy, DeepGini, softmax entropy and random), (b) the accuracy
and resource utilization of retraining convolutional neural networks with three
different configurations (one-step adversarial retraining, adversarial retraining and
adversarial fine-tuning).
Results: We reveal that adversarial retraining from original model weights, and by
ordering with uncertainty metrics, gives the best model w.r.t. accuracy, resource
utilization, and execution time.
Conclusions: Although more studies are necessary, we recommend data scientists
use the above configuration and metrics to deal with the vulnerability to adversarial
inputs of deep learning models, as they can improve their models against adversarial
inputs without using many inputs and without creating numerous adversarial inputs.
We also show that dataset size has an important impact on the results.
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INTRODUCTION
In recent years, deep learning (DL) systems, defined as those software systems with
functionalities enabled by at least one DL model, have become widespread due to their
outstanding capacity to solve complex problems. The use of DL systems ranges from
applications in autonomous driving systems to applications in medical treatments, among
others (Stallkamp et al., 2012; Castanyer, Martínez-Fernández & Franch, 2021a; Tran et al.,
2021). However, given their statistical and black box nature, it is often the case that DL
systems exhibit an unexpected behavior or produce anomalous results when inferring with
inputs different to those used in the training stage. We refer as vulnerabilities to such
unexpected behaviors or anomalous results, because they can lead to undesirable
consequences in real-world DL systems already in production.

The existence of vulnerabilities is commonplace in any type of software system. In
traditional systems, i.e., not embedding any DL model, we may find a vast amount of
testing approaches to ensure a certain level of robustness (Könighofer & Bloem, 2012).
When the tests detect a problem, there are specific solutions to fix the problem or at least
mitigate the effects to a large extent (Khan, 2011). In contrast, testing DL systems is
completely different, due to their non-deterministic nature: the “correct” answer or
“expected” behavior in response to a certain input is often unknown at the time of training
the DL model (Barr et al., 2014; Amershi et al., 2019).

One of the most critical vulnerabilities in DL systems is their exposure to adversarial
input attacks. Adversarial inputs are inputs that can be misclassified by applying them a
perturbation not distinguishable by human eyes. The perturbation is learned by an
attacker, which optimizes the inputs to maximize the DL model’s prediction error (Szegedy
et al., 2013). Therefore, comprehensive DL system testing approaches need to include
techniques to manage adversarial inputs (Machado, Silva & Goldschmidt, 2021). One way
to counteract this vulnerability is by retraining the DL models, with the idea that new
inputs can be used for training a better model than the original. In this way, selecting the
most informative inputs becomes key when retraining.

This work focuses on improving the testing and retraining of DL models in the presence
of adversarial inputs. To this end, we apply two different approaches: (i) using the
information provided by a number of guidance metrics, which try to identify the most
useful inputs according to the criteria of each metric, and (ii) adding adversarial inputs to
augment the dataset employing different training inputs from the original training set. Still,
questions arise: What is the accuracy, resource utilization, and execution time of using
such metrics? What is the accuracy and resource utilization of using a certain retraining
configuration? (the execution time of retraining configuration is not included in this
question as the number of used inputs determines the computation expense of the
retraining). Thus, it is needed to determine specific scenarios in which a particular
guidance metric should be employed, as well as optimal retraining configurations. In this
context, this work aims at comparing both guidance metrics and configurations for
retraining DL models with adversarial inputs based on their accuracy, to improve the DL
models’ performance (Vogelsang & Borg, 2019), resource utilization and execution time,
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both to obtain computational benefits. The results of the research benefit data scientists to
test their models’ accuracy against adversarial inputs and to adapt their models to be aware
of adversarial inputs, while keeping the trade-off with the resource utilization of the
retraining process. We evaluate our method in one typical DL application field, namely
image classification. For this reason, we focus on one particular type of DL model, namely
convolutional neural networks (CNN), which are widely used for image classification due
to their high performance. Since LeCun et al. (1989) introduced them, there has been
significant progress in the literature with respect to their accuracy even in challenging
datasets, as well as the explanation of their behavior and abstraction (Krizhevsky, Sutskever
& Hinton, 2012; Zeiler & Fergus, 2014).

The main contributions of this work are:

� We conduct a study based on five datasets, in which we evaluate and compare various
retraining runs guided by six guidance metrics. We show that using uncertainty metrics
for guiding the retraining of CNN models outperforms neuron coverage, surprise-based
and random metrics w.r.t. accuracy (i.e., using an augmented test set with adversarial
inputs from three different adversarial attacks), resource utilization and execution time
of the metrics.

� In the same study, we conduct a comparison, in terms of accuracy (i.e., using also an
augmented test set with adversarial inputs from three different adversarial attacks) and
resource utilization, of three configurations of retraining CNN models. In particular,
when doing adversarial retraining from original model weights can achieve results that
are aligned with green AI goals.

� We provide guidelines to help data scientists to improve their CNN models against
adversarial attacks from the perspective of green AI. We recommend retraining CNN
models using an augmented training set with adversarial inputs, from original model
weights, and the guidance of uncertainty metrics to improve efficiency without
diminishing the models’ accuracy.

� We provide a replication package, available online (https://doi.org/10.5281/zenodo.
7933484).

This document is structured as follows. Section 2 respectively introduces the field of
study of our work, the DL architecture used for the models, the guidance metrics, and the
adversarial attacks used to create the adversarial inputs. Section 3 describes related work.
Section 4 presents the research questions and the study design. Section 5 presents the
results. Section 6 presents the discussions. Section 7 describes the threats to validity, and
Section 8 draws conclusions and future work.

BACKGROUND
In this section, we introduce (i) the field of study of our work, namely deep learning
(DL) system testing; (ii) the type of DL model we used, namely convolutional neural
networks (CNN); (iii) the guidance metrics used in our study, namely: neuron coverage
(NC), two surprise adequacy (SA) metrics: likelihood-based surprise adequacy (LSA) and
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distance-based surprise adequacy (DSA) and two uncertainty metrics: DeepGini (DG) and
softmax entropy (SE); (iv) the adversarial attacks used to create adversarial inputs, namely
Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM) and Carlini-Wagner
(CW).

Deep learning system testing
Deep learning (DL) system testing has become a relatively new broad research field, in
which every year the number of publications related to the subject increases (Zhang et al.,
2019; Huang et al., 2020; Martínez-Fernández et al., 2022). Aiming at laying the
foundations of software tests to compare DL systems outputs in a consistent and effective
way, different frameworks have been created to facilitate the use of these methods
(Papernot et al., 2016; Rauber, Brendel & Bethge, 2017; Zhang et al., 2018; Gerasimou et al.,
2020; Ahuja, Gotlieb & Spieker, 2022) and likewise a number of testing metrics have been
created to compare the properties of these software testing methods (Pei et al., 2017; Ma
et al., 2018a; Kim, Feldt & Yoo, 2019; Feng et al., 2020).

Convolutional neural networks
Convolutional neural networks (CNNs) are one of the most used DL architectures in
image classification (LeCun et al., 1989; Khan et al., 2020). A CNN consists of an input
layer, an output layer, and multiple hidden layers. These hidden layers typically consist of
convolutional layers, pooling layers, normalization layers, fully connected layers, or other
types of layers to build complex models. Each of the layers contains a different level of
abstraction for an image dataset and the weights of the final model are obtained by
backpropagation (LeCun et al., 1989, 1998; Guo et al., 2017).

Guidance metrics
Current approaches to DL systems testing evaluate them according to a number of
properties, either functional (such as accuracy or precision) or non-functional (such as
interpretability, robustness, or efficiency) (Zhang et al., 2019). In order to test the DL
system behavior with respect to these properties, it is important to have metrics to compare
the behavior of DL models. Among the most used and accepted metrics by the community
are those related to neuron coverage, surprise, and uncertainty of new inputs regarding the
model (Kim, Feldt & Yoo, 2019; Ma et al., 2021; Pei et al., 2017; Weiss, Chakraborty &
Tonella, 2021; Feng et al., 2020).

Neuron coverage (NC)
Pei et al. (2017) proposed the concept of NC in 2017 to measure the coverage of test data of
a DL model and to improve the generation of new inputs, arguing that the more neurons
are covered, the more network states can be explored, increasing the chances of defect
detection (Ma et al., 2018a). The metric is defined as follows. Let D be a trained DL model,
composed of a set N of neurons. The neuron coverage NC of an input x with respect to D is
given by
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NCðxÞ ¼ j n e N j activateðn; xÞj
jNj (1)

where activate ðn; xÞ is true if and only if n is activated when passing x to D.

Surprise adequacy (SA)

Kim, Feldt & Yoo (2019) proposed SA in 2019 as the metric that measures the degree of
surprise of the model when it confronts new inputs with respect to training inputs, with the
hypothesis that a good test set should be “enough” but not too surprising compared to the
training set. Kim, Feldt & Yoo (2019) presented two surprise metrics, which we use in our
study.

Likelihood-based surprise adequacy (LSA). Let D be a DL model trained on a set T of
inputs. The likelihood-based surprise adequacy LSA of the input x with respect to D is
given by:

LSAðxÞ ¼ 1
jANLðTDðxÞÞj

X

xt e TDðxÞ

KHðaNLðxÞ � aNLðxiÞÞ (2)

where aNLðxÞ is the vector that stores the activation values of neurons in the L layer of D
when x is entered, TDðxÞ is the subset of T composed of all the inputs of the same class as x,
ANLðTDðxÞÞ ¼ faNLðxiÞ j xi e TDðxÞg and KH is the Gaussian kernel function with

bandwidth matrix H (Ma et al., 2021).
Distance-based surprise adequacy (DSA). Based on the distance between vectors

representing the neuronal Activation Traces of the given input and the training data (using
Euclidean distance). Let D be a DL model trained on a set T of inputs. The distance-based
surprise adequacy DSA of the input x with respect to D is given by:

DSA xð Þ ¼ aN xð Þ � aN xað Þj jj j
aN xað Þ � aN xbð Þj jj j (3)

where:

xa ¼ argminxi e TDðxÞ aN xð Þ � aN xið Þj jj j (4)

xb ¼ argminxj e TnTDðxÞ aN xað Þ � aN xið Þj jj j (5)

and where DðxÞ is the predicted class of x by D and aN xð Þ is the vector of activation values
of all neurons of D when confronted with x (Ma et al., 2021).

Uncertainty metrics
The hypothesis of using uncertainty-based metrics as a guidance for retraining is that
inputs with higher uncertainty are more likely to be misclassified, they are the most
challenging inputs due to their low confidence. Some authors have studied this type of
metric and proved that inputs with the highest uncertainty are the most informative for the
DL model in a retraining process (Feng et al., 2020;Weiss & Tonella, 2022). In this way, we
evaluate uncertainty with two different approaches:

DeepGini (DG). Feng et al. (2020) presented DG, a metric to prioritize massive tests by
using just the test input activations of the DL models softmax output layer. In such
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manner, execution time and memory requirements are only dependent on the number of
classes, which makes it highly scalable. Unlike coverage metrics like NC, DG is based on a
statistical perspective of DL models, giving higher values to inputs with higher spread of
softmax values across classes, which permits to identify possible misclassification of the
inputs. Let D be a trained DL model for a classification problem with C classes, the
DeepGini DG value of input x with respect to D is given by:

DGðxÞ ¼ 1�
XC

c¼1
lcðxÞ2 (6)

where lcðxÞ are the softmax values ranging from 0 to 1 for class c and input x, which sum
up to 1.

Softmax entropy (SE). This metric is very similar to DG. However, SE is based on the
perspective of information theory (Shannon, 1948) and not a statistical perspective,
requiring logarithmic computation. Let D be a trained DL model for a classification
problem with C classes, the softmax entropy value SE of input x with respect to D is given
by:

SEðxÞ ¼ �
XC

c¼1
lcðxÞ log lcðxÞ (7)

where lcðxÞ are also the softmax values as in DG.

Adversarial attacks
There are DL models whose dataset is augmented when there is not enough data. This can
be done through techniques such as obtaining new entries from those that already exist,
carrying out transformations to these including cuts and rotations, and synthetic data
generation, among others (Tian et al., 2018; Feinman et al., 2017; Jöckel, Kläs & Martínez-
Fernández, 2019). Another way is using adversary inputs, which C. Szegedy discovered in
2013 when he noticed that several DL models are vulnerable to slightly different inputs
from those that are correctly classified, i.e., the adversarial inputs (Szegedy et al., 2013).
This observation caused concerns because it goes against the ability of these models to
achieve a good generalization. We use three state-of-the-art adversarial attacks:

Fast gradient sign method (FGSM)
In 2015, Goodfellow, Shlens & Szegedy (2014) introduced the FGSM method to be able to
create adversarial inputs in a relatively simple way, forcing the misclassification of the
input controlling the disturbance so that it is not perceptible to a human. Given a DL
model f with parameters h, the FGSM is computed as follows:

x�  x þ e signðrx Jðf ; h; xÞÞ (8)

where J is the cost function used for the training of the model in the neighborhood of the
training point x for which the adversary wants to force a wrong classification and e is a
parameter controlling the amount of the perturbation applied to x. The adversary input
corresponding to the input x that results from the method is denoted as x�.

Durán et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1454 6/31

http://dx.doi.org/10.7717/peerj-cs.1454
https://peerj.com/computer-science/


Basic iterative method (BIM)
Kurakin, Goodfellow & Bengio (2018) presented BIM, an iterative version of FGSM. The
difference is that in this attack, they apply FGSM multiple times with a small perturbation
size, computed as follows:

x�0  x (9)

x�nþ1  Clipx;efx�n þ a signðrx f ; h; x�n
� �Þg (10)

where Clip means clipping the values after each smaller step a to be within an
e-neighborhood of the original input, instead of applying a single step e.

Carlini-wagner (CW)
The Carlini-Wagner (CW) attack was proposed by Carlini & Wagner (2017). They
generate adversarial inputs by finding solutions to an optimization problem. Given a DL
model f , with logits layer Z and an input image x with t being the target class, using
gradient descent, the Eq. (11) is solved iteratively:

minimize jjx � x�jj22 þ c � ‘ðx�Þ (11)

where the attack searches for a small perturbation x � x� that fools the model. A
hyperparameter c is used in order to compute the minimal perturbation required for the
objective. On top of that, there is a cost function ‘ which operates over the logits Z and the
hyperparameter j to manage the confidence to generate adversarial examples that will be
misclassified. However, incrementing it produces perturbations that may be perceptible by
humans.

‘ðx�Þ ¼ maxðmaxfZðx�Þi : i 6¼ tg � Zðx�Þt;�jÞ (12)

RELATED WORK
From the reviewed literature, there are many studies focusing on the creation of adversarial
inputs in order to uncover debilities and vulnerabilities of DL systems or models
(Goodfellow, Shlens & Szegedy, 2014; Kurakin, Goodfellow & Bengio, 2018; Carlini &
Wagner, 2017). Goodfellow, Shlens & Szegedy (2014) were the first to formulate a concrete
definition of the adversarial inputs and clarify their generalization in different architectures
and training sets. Additionally, they defined FGSM which allowed generating adversarial
inputs. Since then, several adversarial attacks have been proposed (Carlini & Wagner,
2017; Kurakin, Goodfellow & Bengio, 2018; Ren et al., 2020).

Other studies centered on being able to detect such adversarial inputs for different
purposes. Feinman et al. (2017) aimed at distinguishing adversarial samples from their
normal and noisy counterparts. Ma et al. (2018a) used their coverage criteria to quantify
defect detection ability using adversarial inputs created with different adversarial
techniques. Kim, Feldt & Yoo (2019) used their proposed SA criteria to show that they
could detect adversarial inputs.Wang et al. (2021) considered augmenting the test set with
adversarial inputs, to investigate the performance of their test input prioritization
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approach, PRIMA (PRioritizing test inputs via Intelligent Mutation Analysis), on this type
of input.

Although there are several techniques to face the problem of adversarial examples in ML
literature (Croce et al., 2020), there is a research challenge focused on using adversarial
inputs together with guidance metrics in retraining with the purpose of improving the
models (Pei et al., 2017; Ma et al., 2018b; Kim, Feldt & Yoo, 2019), see Table 1 for a
summary. In these few works, we can identify in the majority of them, a configuration
similar to the adversarial fine-tuning presented in Section 4 of this work, in which the
authors retrain with only a few adversarial inputs and do not clearly show the steps for the
retraining. Kim, Feldt & Yoo (2019) showed that sampling inputs using SA for retraining
can result in higher accuracy, Pei et al. (2017) showed that error-inducing inputs generated
by DeepXplore can be used for retraining to improve accuracy. Feng et al. (2020)
demonstrated that retraining a model with the prioritization of DG is more effective in
improving the DL model accuracy than coverage-based metrics.

Most recently, Ma et al. (2021) proposed to use testing metrics as a retraining guide,
looking for an answer on how to select additional training inputs to improve the accuracy
of the model. They used the original training set starting from a previous trained model but
ordering these inputs following the metrics’ guidance. Similarly, Weiss & Tonella (2022)

Table 1 Review of the retraining configurations used in related work (OAR, AR and AF refer to the configurations presented in Section 4).

Study Configuration Independent variables Studied variables Datasets

Pei et al.
(2017)

Retraining of an original model with 100 new
error-inducing samples (Similar to AF).

DL model Accuracy MNIST, ImageNet, Udacity
challenge, Contagio/
VirusTotal, Drebin

Tian et al.
(2018)

Retraining using synthetic images and original
training set. Does not specify if it is done from
scratch (Similar to OAR and AR).

Image transformation Accuracy, MSE Udacity challenge

Kim, Feldt
& Yoo
(2019)

Retraining with 100 new inputs from different
ranges of SA metrics (Similar to AF).

Layer of neurons used for
SA computation
adversarial attack

Accuracy, MSE MNIST, CIFAR-10, Udacity
challenge

Ma et al.
(2021)

As AF, however on each iteration they compute
the metrics, instead of calculating metrics once.

Testing metric (Guidance
metric)

Accuracy, validation loss MNIST, Fashion-MNIST,
CIFAR-10

Ma et al.
(2018b)

As AF, but when they add a new selected batch, it
starts from previous retrained model; not from
original model weights.

DL model Accuracy MNIST, Fashion-MNIST,
CIFAR-10

Feng et al.
(2020)

Retraining using 1%, 2%,…, 10% of an adversarial
test set (Similiar to AF).

Test prioritization
technique (Guidance
metric)

Accuracy, Execution Time,
Average Percentage,
Faults Detected

MNIST, Fashion-MNIST,
CIFAR-10, SVHN

Weiss &
Tonella
(2022)

Retraining using 10% or 20% of a half of the test
set, using out-of-distribution datasets, which are
different to adversarial inputs (Similar to AF).

Test input prioritizer
(Guidance metric)

Accuracy, Execution Time,
Average Percentage,
Faults Detected

MNIST, Fashion-MNIST,
CIFAR-10, IMDB

Guo et al.
(2022b)

Similar to AF, using just one adversarial attack. Acquisition function
(Guidance metric)

Accuracy, robustness MNIST, Fashion-MNIST,
CIFAR-10, SVHN

This study OAR, AR and AF (see Section 4). Guidance metric
retraining configuration

Accuracy, Resource
utilization, Execution
Time

GTSRB, Intel, CIFAR-10,
MNIST, Fashion-MNIST
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used these metrics (Test Input Prioritizers, in their study) to identify the inputs which
expose model faults to integrate them to the training set of future retraining runs. They
replicated the findings of Feng et al. (2020), however, they found that DG does not in
general perform better than other uncertainty metrics and they did not utilize adversarial
inputs, but out-of-distribution inputs & inputs from a test set. Compared to these works,
we aim to conduct the retraining using the information of an augmented dataset with
adversarial inputs and inputs from the original training set.

As the use of adversarial inputs has been proved to provide many improvements, we
identified a research gap there to take advantage of them during a retraining process.
Moreover, we want to understand how to order an augmented dataset with adversarial
inputs guided by metrics so that the retraining is efficient (with highest accuracy and using
fewest inputs) for data scientists. To the best of our knowledge, our study is the first one
that applies metrics to guide a retraining using an augmented dataset with adversarial
inputs in order to improve the model accuracy against adversarial inputs and keeping the
trade-off with resource utilization, in order to obtain computational benefits, which is key
as the retraining phase is time consuming and the creation of adversarial images has a high
computational cost (Shafahi et al., 2019).

In our study, we consider an augmented dataset with adversarial inputs obtained from
the original training set using the FGSM, BIM and CW attacks. Therefore our study
provides the following novel contributions:

� A comparison between state-of-the-art guidance metrics for a guided retraining.

� A comparison of three different configurations for doing a retraining against adversarial
inputs.

� Guidelines to help data scientists to improve their CNN models against adversarial
attacks from the perspective of green AI.

EMPIRICAL STUDY
Research questions
The goal (Basili, Caldiera & Rombach, 1994) of this research is to analyze guidance metrics
and retraining configurations for a retraining process of CNN models with the purpose of
comparing them with respect to DL testing properties such as accuracy, resource
utilization, and execution time from the point of view of a data scientist in the context of
image classification.

Thus, we aim at answering the following research questions (RQ):

� RQ1 - Does the use of guidance metrics impact the accuracy, the resource utilization,
and the execution time required for the retraining of a CNN model?

� RQ2 - Does the configuration of the retraining of a CNNmodel impact the accuracy and
the resource utilization required for retraining this model?
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Variables
Table 2 describes the variables of our study. Regarding the dependent variables, some
details follow:

� Accuracy, measures the capability of the retraining phase of providing higher accuracy
against adversarial inputs. We plan to measure the accuracy of the CNN models against
an augmented test set, composed of the original test set and an adversarial test set. The
latter is obtained from the original test set, applying the chosen adversarial attacks to
each input.

� Resource utilization, which measures the input size needed to obtain the highest
accuracy during the retraining phase.

� Execution time, which quantifies the time to compute each of the considered metrics for
the corresponding dataset.

Another variable that influences our conclusions is the dataset. We experiment with five
different datasets of different size and from different domains. Hence, we define the dataset
as a nominal variable indicating the used dataset for training and retraining the models.

Study design
Figure 1 shows the study design. First, the data collection and preprocessing which consists
of the collection and preprocessing of raw data. Second, the model training which consists
of the traditional training and proposed retraining phase. Finally, we provide answers to
the RQs by analyzing our results w.r.t. DL testing properties.

Table 2 The variables of the study.

Class Name Description Values or formula Scale

Independent Guidance metric Testing metrics used to order the inputs for retraining NC, DSA, LSA,
Random, DG, SE

Nominal

Retraining
configuration

The configuration used for retraining the models against adversarial
inputs

OAR, AR, AF Nominal

Dependent Accuracy Accuracy using the augmented test set composed of the original test set
and an adversarial test set obtained from the previous applying the
adversarial attacks to each one of the original test inputs
TP = True Positives; TN = True Negatives
FP = False Positives; FN = False Negatives

TP þ TN
TP þ TN þ FP þ FN

Ratio

Resource utilization u = Input size used to obtain the maximum accuracy
T = Number of total inputs

u
T Ratio

Execution time Time to obtain the metrics values hh:mm:ss Interval

Other Dataset The datasets used for training the DL models GTSRB, Intel, CIFAR-
10, MNIST, Fashion-
MNIST

Nominal
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Data collection and preprocessing: datasets.
We evaluate the guidance metrics on CNNs using five multi-class, single-image
classification datasets.

First, the German Traffic Sign Recognition Benchmark (GTSRB) dataset, with 43 classes
containing 39,208 unique images of real traffic signs in Germany. It has been widely used
in DL research (Castanyer, Martínez-Fernández & Franch, 2021a; Stallkamp et al., 2012;
Loukmane, Graña &Mestari, 2020). This type of images are characterized by large changes
of visual appearance for different causes (e.g., weather conditions). While humans can
easily classify them, for DL systems (e.g., autonomous driving systems) still is a challenge.

Second, the Intel Image Classification (Intel) dataset with six classes containing 17,034
labeled images of natural scenes around the world, used in many studies as well (Wu et al.,
2020; Rahimzadeh et al., 2021; Ren & Li, 2022). It was provided by Intel corporation to
create another benchmark in image classification tasks such as scene recognition (Bansal,
2019). This scene recognition task is a daily task for humans and widely used application in
industries such as tourism or robotics, still an emerging field for computer vision (Matei,
Glavan & Talavera, 2020; Sobti et al., 2021).

Third, the Canadian Institute for Advanced Research (CIFAR-10) dataset, with 10
classes containing 60,000 labeled images of animals and transports, such as dogs, cats,
airplanes and ships (Krizhevsky, Nair & Hinton, 2009). This dataset is commonly used to
train machine learning and DL models. Compared to MNIST, it is more difficult to train a
model due its size and complexity.

Fourth, the Modified National Institute of Standards and Technology (MNIST) dataset,
with 10 classes containing 70,000 labeled images of handwritten digits from 0 to 9 which
are size-normalized and centered (LeCun & Cortes, 2010). This dataset is also commonly
in the training of machine learning and DL models, known for its simplicity in terms of
computation.

Fifth, the Fashion-MNIST dataset (Fashion), which considers 10 classes and also
contains 70,000 labeled images of clothing, such as T-shirts, pullovers and sneakers (Xiao,

Figure 1 Schema of our empirical study. Full-size DOI: 10.7717/peerj-cs.1454/fig-1
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Rasul & Vollgraf, 2017). This dataset was provided to be a more challenging alternative to
the well-known MNIST dataset.

The adversarial inputs are obtained using the FGSM, BIM and CW attacks from the
foolbox library (Rauber, Brendel & Bethge, 2017). Table 3 describes the models we use in
our study and the total number of inputs of the augmented test set with adversarial inputs
generated by the adversarial attacks.

Model training
The traditional training of a model consists of using an available original training set
identified as “Train” in Fig. 1 and then evaluating the model against an original test set
identified by “Test” in Fig. 1. The traditional training is represented in the upper part of
Fig. 1 (ii) Model training phase. We plan to add in this phase a retraining process as it is
represented in the lower part of Fig. 1 (ii) Model training phase. This retraining uses
adversarial inputs guided by the metrics and three different configurations, which are
inspired by ML literature (Szegedy et al., 2013; Chen, Wang & Chen, 2020; Jeddi, Shafiee &
Wong, 2020), to improve the original model,M, against adversarial inputs. After obtaining
a retrained model,M�, we evaluate the DL testing properties of this retrained model. In our
study, we consider and refer to the following weights:

� Weights from scratch: Random initialization of the model’s weights.

� Original model weights (M):Obtained after traditional training, using only inputs from
the original training set “Train”.

� Retrained model weights (M�): Obtained after the retraining process (according to the
retraining configuration). These weights are from the 20 data points by selecting the
model that achieves the highest accuracy.

The retraining process is shown more extensively in Fig. 2. It comprises the following
steps:

1. Step 1. Create adversarial inputs for training and testing: First, we obtain the
adversarial training set, “Adv. Train”, by applying the adversarial attacks to a subset of the
original training set, “Train”. The number of the adversarial inputs for this case is a small
proportion of the entire “Train” set, thus we do not increase the artificial inputs used in

Table 3 CNN models.

Dataset # Layers of the CNN (using
convolution and dense layers with
max-pooling and dropout)

#
Neurons

# Original test set
inputs

# Augmented test set
inputs

GTSRB 9 1,259 3,923 7,846

Intel 7 970 3,000 6,000

CIFAR-
10

8 634 6,001 12,002

MNIST 4 234 7,001 14,002

Fashion 5 330 7,001 14,002
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retraining and the original input distribution is not diminished either (represented in the
upper part of Fig. 3). Putting these two sets together, we obtain the augmented training set,
“Train�” (represented in the lower part of Fig. 3). In our experimental setup, each of the
three adversarial attacks is applied to only one third of the involved set.
Second, we obtain the adversarial test, “Adv. Test”, set by applying in the same way the
adversarial attacks to the entire original test set “Test”. Putting these “Test” and “Adv. Test”
sets together, we obtain the adversarial test set “Test�”. Figure 3 provides a comprehensive
depiction of this step.

2. Step 2. Compute guidance metrics: Based on the original trained model, M, and the
“Train” set, we compute the different metrics for the augmented training set, “Train�” (see
Fig. 2 Step 2).

3. Step 3. Order inputs w.r.t. the guidance metrics: According to each metric, we order
the inputs for the retraining. With this, we expect that the retrained model, M�, will be
trained first with the images that are more difficult to classify and more informative
according to the metrics’ value (see Fig. 2 Step 3).

4. Step 4. Retraining according to the configuration: We implement the retraining in
three different ways using ordered inputs according to the following configurations (see
Fig. 2 Step 4 and Table 4):

(a) One-step Adversarial Retraining (OAR): Starting from scratch using the new
adversarial inputs and original training set. The model M� is retrained with the “Train�”

Figure 2 Schema of retraining process. Full-size DOI: 10.7717/peerj-cs.1454/fig-2
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set ordered by highest score of LSA, DSA, DG, SE, NC and Random, respectively, starting
from scratch.

(b) Adversarial retraining (AR): Starting from the original model M using the new
adversarial inputs and original training set. The model M� is also retrained with the
“Train�” set as in OAR with the difference that the modelM� is retrained from the original
model M weights.

(c) Adversarial fine-tuning (AF): Starting from the original model M using only the new
adversarial inputs. The model M� is retrained with the “Adv. Train” set, also ordered by
highest score of LSA, DSA, DG, SE, NC and Random, respectively, starting from the
original model M weights.

Figure 3 Schema of obtaining adversarial and augmented sets.
Full-size DOI: 10.7717/peerj-cs.1454/fig-3

Table 4 Retraining configurations.

Retraining
configuration

Initial
weights

Final
weights

Trained with (inputs are sorted by
each guidance metric)

Tested
with

OAR From scratch M� Train* Test*

AR M M� Train* Test*

AF M M� Adv. Train Test*
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For each configuration, we execute a retraining of the models guided by the six metrics
and for each metric we obtain 20 data points as shown in Figs. 4–8. Regarding the
hyperparameters configuration, the same configuration is used for the original model and
retrained model. Each retraining run for each data point is computed from their respective
initial weights. Also, we address randomness of resulted values by executing the retraining
randomly, and not through incremental training, which means each data point is obtained
by starting the retraining from its initial model weights instead of incremental training
(starting from its previous data point).

Data analysis
Figures 4–8 correspond to the accuracy of the models against the augmented test set,
“Test�”. Table 5 shows the accuracy against the same “Test�” set and resource utilization of
the experiments by dataset, configuration and metric used in each case. The “Original
accuracy” column shows the accuracy of the original model M against the “Test�” set,
which is low due to the adversarial inputs, the “Accuracy w.r.t. augmented test set” column

Figure 4 (A–C) Accuracy of the trained models using GTSRB dataset. Full-size DOI: 10.7717/peerj-cs.1454/fig-4

Figure 5 (A–C) Accuracy of the trained models using Intel dataset. Full-size DOI: 10.7717/peerj-cs.1454/fig-5
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Figure 7 (A–C) Accuracy of the trained models using MNIST dataset. Full-size DOI: 10.7717/peerj-cs.1454/fig-7

Figure 8 (A–C) Accuracy of the trained models using Fashion-MNIST dataset. Full-size DOI: 10.7717/peerj-cs.1454/fig-8

Figure 6 (A–C) Accuracy of the trained models using CIFAR-10 dataset. Full-size DOI: 10.7717/peerj-cs.1454/fig-6
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shows the highest accuracy during its respective retraining and the “Resource utilization”
column shows the input size to obtain that highest accuracy. Table 6 shows the execution
time to compute the considered metrics for every input of the corresponding dataset.

In order to compare the impact that guidance metrics and retraining configurations
have on the accuracy and resource utilization of the retrained models, we select the best
model, according to the accuracy, during the retraining of the 20 data points for each
combination of configuration and guidance metric (see marked points on Figs. 4–8 in the
Results). We obtain the accuracy and resource utilization of these points and report these
values in Table 5 to determine if they can be improved by guiding the retraining with the

Table 5 Accuracy against augmented test set (original test set and adversarial test set) and resource utilization when the model reach the
maximum accuracy for OAR, AR and AF applied to each dataset.

Accuracy w.r.t. augmented test set Resource utilization

Dataset Config.1 Original
accuracy

LSA DSA DG SE NC Random LSA DSA DG SE NC Random

GTSRB OAR 0.848 0.971 0.968 0.971 0.975 0.968 0.973 35,000/
35,287

35,287/
35,287

35,000/
3,5287

15,750/
35,287

35,287/
35,287

35,287/
35,287

Intel OAR 0.687 0.736 0.753 0.756 0.750 0.748 0.749 12,600/
14,224

14,224/
14,224

12,600/
14,224

11,900/
14,224

12,600/
14,224

13,300/
1,4224

CIFAR-
10

OAR 0.577 0.669 0.668 0.664 0.664 0.666 0.659 47,999/
47,999

38,400/
47,999

38,400/
47,999

43,200/
47,999

43,200/
47,999

38,400/
47,999

MNIST OAR 0.977 0.987 0.989 0.992 0.990 0.986 0.988 53,200/
55,998

25,200/
55,998

11,200/
55,998

11,200/
55,998

55,998/
55,998

53,200/
55,998

Fashion OAR 0.834 0.901 0.907 0.904 0.906 0.893 0.902 55,998/
55,998

33,600/
55,998

44,800/
55,998

44,800/
55,998

47,600/
55,998

44,800/
55,998

GTSRB AR 0.848 0.945 0.957 0.958 0.961 0.943 0.940 17,500/
35,287

3,500/
35,287

8,750/
35,287

12,250/
35,287

35,287/
35,287

29,750/
35,287

Intel AR 0.687 0.735 0.724 0.730 0.740 0.728 0.738 14,000/
14,224

13,300/
14,224

13,300/
14,224

10,500/
14,224

12,600/
14,224

14,000/
14,224

CIFAR-
10

AR 0.577 0.653 0.660 0.652 0.643 0.636 0.641 47,999/
47,999

14,400/
47,999

33,600/
47,999

26,400/
47,999

45,600/
47,999

28,800/
47,999

MNIST AR 0.977 0.987 0.988 0.992 0.991 0.986 0.987 55,998/
55,998

22,400/
55,998

14,000/
55,998

14,000/
55,998

55,998/
55,998

55,998/
55,998

Fashion AR 0.834 0.901 0.909 0.906 0.909 0.894 0.892 55,998/
55,998

22,400/
55,998

28,000/
55,998

42,000/
55,998

55,998/
55,998

36,400/
55,998

GTSRB AF 0.848 0.958 0.962 0.961 0.960 0.952 0.957 3,610/
3,921

3,921/
3,921

2,850/
3,921

2,850/
3,921

3,921/
3,921

3,230/
3,921

Intel AF 0.687 0.721 0.701 0.724 0.720 0.719 0.718 2,850/
3,000

2,100/
3,000

2,250/
3,000

3,000/
3,000

2,850/
3,000

2,400/
3,000

CIFAR-
10

AF 0.577 0.634 0.643 0.640 0.636 0.639 0.653 6,000/
6,000

5,700/
6,000

6,000/
6,000

5,100/
6,000

5,400/
6,000

5,400/
6,000

MNIST AF 0.977 0.988 0.988 0.989 0.990 0.986 0.988 6,999/
6,999

5,440/
6,999

3,060/
6,999

3,060/
6,999

5,100/
6,999

5,780/
6,999

Fashion AF 0.834 0.904 0.909 0.904 0.907 0.905 0.906 6,460/
6,999

6,999/
6,999

5,100/
6,999

6,120/
6,999

6,999/
6,999

6,999/
6,999

Notes:
1Configuration of retraining.
Bold numbers indicate the accuracy (at most 0.001% worse than the highest value) and resource utilization for the model with the highest accuracy during retraining.
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studied metrics and using the studied retraining configurations. In addition to that, we
compare the execution time it takes to compute the guidance metrics in Table 6.

We answer the RQs from two different angles. First, we compare the accuracy changes
against the augmented test set in the 20 data points of the retrained models according to
each configuration and guidance metric. The augmented test set is composed of the
original test set and the adversarial test set created with the same adversarial attacks but
using inputs of the original test set; this way we ensure that the test data is never used
during retraining. Figure 9 shows samples from the adversarial test set of the used datasets,
these are first misclassified and after the retraining process are well classified. Second, we

Figure 9 (A–E) Adversarial input samples. Captions include: dataset; original model predicted class
(incorrectly predicted); retrained model predicted class (correctly predicted).

Full-size DOI: 10.7717/peerj-cs.1454/fig-9

Table 6 Execution time in hours (hh:mm:ss) to obtain the values of the metrics.

Dataset LSA DSA DG SE NC Random

GTSRB 00:03:32 00:36:19 00:00:48 00:00:49 05:28:57 00:00:00

Intel 00:01:11 00:01:47 00:00:09 00:00:09 01:11:02 00:00:00

CIFAR-10 00:05:54 00:19:47 00:00:25 00:00:27 06:57:19 00:00:00

MNIST 00:08:51 00:39:02 00:00:22 00:00:23 02:32:26 00:00:00

Fashion 00:04:38 00:25:10 00:00:12 00:00:12 01:20:43 00:00:00

Durán et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1454 18/31

http://dx.doi.org/10.7717/peerj-cs.1454/fig-9
http://dx.doi.org/10.7717/peerj-cs.1454
https://peerj.com/computer-science/


compare the input size required to obtain the model with highest accuracy between those
data points according to each configuration and guidance metric.

RESULTS
In this section, we report the results of our empirical study, answering RQ1 and RQ2, and
highlighting key takeaways.

To better describe the results, we use Figs. 4–8 and Tables 5 and 6, as explained in the
Data analysis section.

Results on guidance metrics (RQ1)
Guidance metrics and accuracy. According to Figs. 4–8, we found in the experiments that
uncertainty metrics have the best selection of inputs for the retraining as stated by the
observed accuracy. Eleven out of fifteen guided retraining runs obtained the best accuracy
using uncertainty metrics (highlighted with bold font in Table 5).

Nearly half of the retraining runs, NC has the worst selection of inputs according to
Table 5. In addition to that, NC and LSA need more inputs according to Figs. 4–8 to reach
a good accuracy compared to the others.

Mostly, the six guidance metrics reach good accuracy, as the worst difference between
the highest and the lowest value is 2.4% of accuracy. However, according to the state-of-
the-art accuracy levels and dataset sizes, a minimum percentage of accuracy in DL models
can make a great difference in a DL system.

Guidance metrics and resource utilization. Uncertainty metrics can reach a better model
with fewer inputs, as much as 11,200/55,998 inputs in the best case with 0.992 of accuracy
(MNIST dataset) using less than a third of the available dataset, as shown in Fig. 7A and
Table 5. On the other hand, this is not so clear when using Intel dataset, which may be due
to the size of the dataset: as there are not enough inputs, the metrics can not make a
difference with just a percentage of an already relatively small dataset. Nevertheless, SE was
the best option according to Fig. 5B. The best option within SA metrics is using DSA, as it
presents good resource utilization. When using NC and random, figures show that it is
necessary to use almost the entire dataset.

Overall, uncertainty metrics may be the best due to the fact that they identify the inputs
that have a low confidence on their classification. Regarding SA metrics, the model has
improved since they first identify the inputs that are most different from the previous
training inputs. In that way, the model learns features that it missed during the first
training, increasing the correct classifications of adversarial inputs. On the other hand, for
NC metric it may be more difficult to identify good inputs for retraining because this
metric identifies inputs that cover more neurons according to certain thresholds, which in
retraining may not be significant.

Guidance metrics and execution time. We obtained the time to calculate the metrics as
stated in Table 6. To obtain NC values it takes more than 3× in terms of execution time w.r.
t. the needed to obtain SA values, which may be due to the library used and to a non-
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optimized metric computation. In addition, the shorter time required to get SA values in
comparison with the NC values computation may be also due to the size of the datasets, as
it is known that the computation of SA metrics tends to quickly augment as the dataset
increases (Weiss et al., 2021). We can observe this trend when comparing the ratio of NC
execution time to DSA execution time in each dataset. When we consider Intel dataset,
computing NC values takes 39× the DSA execution time, but when using MNIST or
Fashion-MNIST dataset, this ratio reduces to almost 3×. Regarding the uncertainty
metrics, it is clear that they have a major benefit. It did not take more than a minute to
compute these metrics since their computation only depends on the number of classes.
This can be observed in Table 6: it takes more time to compute in the case of GTSRB
because it has more classes than the other datasets (a total of 43 classes compared to the
number of the other datasets, ten classes on CIFAR-10, MNIST and Fashion-MNIST, and
only six classes on Intel).

Key takeaways for RQ1:

� Uncertainty metrics have the best selection of inputs for the retraining as stated by the
observed accuracy.

� Uncertainty metrics can reach a better model with fewer inputs. DSA also has an
acceptable resource utilization.

� Uncertainty metrics execution time is insignificant compared to SA and NC metrics.
The computation of NC values takes more than 3× in terms of execution time w.r.t. the
time needed to obtain SA metrics.

Results on retraining configurations (RQ2)
Configuration of the retraining and accuracy. According to the total number of used inputs,
as expected, OAR and AR reached higher values of accuracy than AF. Nevertheless,
between these two configurations, the benefits of using AR are greater because with fewer
inputs (nearly less than a third in the best cases, see Table 5), it is possible to complete the
retraining with high accuracy. Due to the initial weights used in AR, this incremental
training creates a bias towards the original training set, which can be the reason why AR
does not worsen its accuracy against inputs from the original test set. In the same way, the
help of the adversarial training set, “Adv. Train”, which augmented the initial dataset,
makes this model better against the adversarial inputs from the augmented test set, “Test�”.

Configuration of the retraining and resource utilization. According to resource
utilization, AF would be the best option for the studied configurations. However, it has the
lowest accuracies, because of the available input size for retraining. In addition to that, the
results from using this configuration present very wavy graphs (see configuration OAR
from Figs. 4–8), which makes this configuration unstable and using it may not always lead
to the expected results due to random influences. Therefore, Table 5 shows that AF only
can be a good option if we aim to execute retraining with just a few inputs, because in all
the cases, the accuracy is augmented. Thus, AR can be considered the best option, as it
needs fewer inputs than OAR to reach high accuracy.
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Key takeaways for RQ2:

� The benefits of using AR are greater because with fewer inputs, nearly less than a third in
the best case, it is possible to retrain the model with high accuracy.

� AF can be a good option for retraining the model in those cases in which we prioritize
resource utilization.

DISCUSSION
Our experimental results focused on the retraining of models against adversarial inputs,
taking into consideration the most used and practical state-of-the-art guidance metrics:
LSA, DSA, DG, SE, NC, and Random. On top of that, we considered the manner (i.e.,
retraining configuration) in which the retraining is done.

As observed in the results, we have verified that NC is not a consistent metric to take
into consideration to select inputs when retraining. Our results concur with previous
studies, mainly Harel-Canada et al. (2020), which have already stated that NC should not
be trusted as a guidance metric for DL testing. On the one hand, NC measures the
proportion of neurons activated in a model and it assumes that increasing this proportion
improves the quality of a test suit. On the other hand, Harel-Canada et al. (2020) showed
that increasing NC value leads to fewer defects detected, fewer natural inputs, and more
biased prediction preferences, which is contrary to what we would expect when selecting
inputs for a retraining process to have a better model and reduce the input size for that. In
our study, the results confirm that NC should not be trusted as a guidance metric.
Furthermore, Table 6 shows an evident disadvantage on execution time when computing
NC. Overall, different metrics rather than NC should be used when doing guided
retraining.

Ma et al. (2021) found that uncertainty-based (variance score and Kullback-Leibler
score) and surprise-based metrics (SA metrics, namely DSA and LSA) are the best at
selecting retraining inputs and lead to improvements in the number of used inputs, up to
twice faster than random selection, in order to find an answer on how to select additional
training inputs to improve classification accuracy. Regarding SA metrics, as we did not
consider the same uncertainty metrics, we confirm the results obtained in that study: SA
metrics, especially DSA, compared to the baseline of random selection and also to NC, are
a better option for retraining a DL model w.r.t. accuracy and number of used inputs. For
their part,Weiss & Tonella (2022) claimed that SA metrics and NC-based metrics are often
outperformed by other uncertainty approaches such as DG or simpler uncertainty metrics
including SE, which is not considered in Feng et al. (2020), when retraining a DL model.
Regarding uncertainty metrics, we also confirm their results: Uncertainty metrics
compared to SA metrics, NC, and random selection, are better and lead to faster
improvements. We consider this work as a complement to the results of the RQ about the
selection for retraining of Ma et al. (2021), and the same for the similar RQ of Weiss &
Tonella (2022), as we focused our work on increment the model’s accuracy against
adversarial inputs (see Table 7).
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Although our results show that these metrics improve the model faster (in terms of the
input size used for retraining), we have found that the size of the dataset greatly affects the
results, because when using small datasets it is not so fast. Ma et al. (2021) and Weiss &
Tonella (2022) only considered datasets with more than 50,000 available inputs to use in
the retraining (the entire training set), but in real-world applications is not always possible
to have such large datasets. Unlike these works, we have experimented with a smaller
dataset in which the improvements are minor (Intel dataset).

Additionally, an important finding is a variable that we also considered: the
configuration of retraining. All the related works have only experimented with their own
way to execute the retraining and even sometimes they are not explicit with how they did
the retraining process. As we observe in the results, the configuration can change the
performance of the model considerably. These results confirm the importance on finding
efficient configurations to retrain deep learning models. Considering the studied
configurations, using the best configuration studied in this work (AR) can give data
scientists a fast and efficient method of retraining.

Regarding the computational complexity of the retraining process, we acknowledge that
it increases the complexity of the entire training process. Indeed, a defense strategy against
adversarial attacks is needed and a retraining process is one of the most effective strategies
(Serban, Poll & Visser, 2020). In that way, according to our results, the least
computationally complex process will depend on the application of the model and by
following our guidelines it is possible to do a retraining against adversarial inputs without
increasing by much the complexity of the retraining. The differences between
configurations are the input set used for the retraining and the initial weights, as the same

Table 7 Complementary studies.

Study Results related to our RQ1 Results related to
our RQ2

Context

Ma et al.
(2021)

Uncertainty-based metrics, which are different from the ones
we used (namely augmented versions of variance score and
Kullback-Leibler score), and surprise-based metrics are the
best at selecting retraining inputs and lead to improvements
up to two times faster than random selection.

Not considered. Retraining configuration. Their original model is
trained with only 10,000 inputs. Then compute
the metrics to select a batch of 5,000 inputs from
the rest of the training set, and so on, until the
entire training set is used.
Adversarial inputs. Adversarial inputs are not
considered in the test set to evaluate accuracy, nor
for retraining. However, they compute empirical
robustness (Moosavi-Dezfooli, Fawzi & Frossard,
2016), which considers adversarial inputs based
only on FGSM and randomly picked inputs.

Weiss &
Tonella
(2022)

They replicate Feng et al. (2020) results about DG, it
outperforms surprise metrics and NC metrics on execution
time and active learning effectiveness (accuracy when
retraining a model). On top of that, they state that SA metrics,
NC-based metrics, and even DG are often outperformed by
other simpler uncertainty approaches such as SE or Vanilla
Softmax.

Not considered. Retraining configuration. They split test sets into
two parts, one is used for retraining and the other
for testing. Then from the original training set
and the new inputs added, select the first 20% for
retraining.
Adversarial inputs. They use corrupted data
instead of adversarial inputs in their test set,
which is used for retraining and testing.
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model is used for the retraining process, without increasing the model complexity. In that
sense, a lower value of resource utilization with the help of guidance metrics translates into
fewer operations.

When using the combination of uncertainty metrics, especially SE metric, and AR
retraining configuration, we observe that it can lead to results that are aligned with green
AI research, which refers to research that takes into account computational costs to reduce
the computational resources spent (Schwartz et al., 2020; Castanyer, Martínez-Fernández
& Franch, 2021b), as fewer inputs are needed for retraining and also less time to compute
the values of the metric w.r.t. the evaluated options for both independent variables. We
observe greater benefits of using AR over the other approaches, as we give greater weight to
the efficiency without diminishing the models’ accuracy, and encourage data scientists to
build greener DL models.

Previous studies, our results, and new implementations of these metrics (Weiss,
Chakraborty & Tonella, 2021; Ouyang et al., 2021; Kim et al., 2020) aim to be a baseline for
test methods in DL testing: for data selection in retraining processes, data generation, data
selection, etc. In this way, we offer guidelines for data scientists in the context of testing
with adversarial inputs during the retraining of CNNs for image classification:

� Guidance metrics and accuracy. Retraining with the guidance of uncertainty metrics can
achieve CNN models with higher accuracy compared with the rest of the studied
metrics.

� Guidance metrics and resource utilization. When prioritizing the number of inputs used
for retraining, uncertainty metrics need fewer inputs to reach higher accuracy.

� Guidance metrics and execution time. When considering the execution time to obtain
the metrics, uncertainty metrics are by far the best choice w.r.t. to other metrics, with the
exception of random.

� Retraining configuration and accuracy. When prioritizing accuracy, retraining with
original inputs and adversarial inputs from scratch (OAR) is the best option. However,
retraining with original inputs and adversarial inputs from original model weights (AR)
can reach similar accuracies without considerable differences and this configuration uses
fewer inputs.

� Retraining configuration and resource utilization. Retraining with original inputs and
adversarial inputs from original model weights (AR) has a good resource utilization, in
addition to high accuracies w.r.t. the other configurations. Nevertheless, retraining with
only adversarial inputs (AF) is the best option when prioritizing only resource
utilization.

� Green AI. When considering efficiency without diminishing the accuracy of the model,
retraining with original inputs and adversarial inputs from original model weights (AR),
and the guidance of uncertainty metrics, especially SE, is the best way to retrain a CNN
model in the mentioned context.
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THREATS TO VALIDITY
In this section, we report the limitations of our empirical study and some mitigation
actions taken to reduce them as much as possible.

Regarding construct validity, we include five original models using CNN architecture
trained in five different datasets, respectively, in order to mitigate mono-operation bias.
Derived from the metrics selected, we use LSA, DSA, DG, SE, NC, and Random metrics to
guide the retraining runs, which may have potential threats. However, these metrics have
been used in previous work as shown in the Related Works section, lowering this threat.
And according to threats related to the configurations, we have reviewed the relevant
literature and searched for retraining configurations using adversarial inputs.

Concerning conclusion validity, the quality of the DL models and implementations
depends on the experience of the developers. To mitigate this, we provide the
implementations organized and following the “Cookiecutter Data Science” project
structure (https://drivendata.github.io/cookiecutter-data-science), making them as simple
as possible. To increase reliability in our study, we detail the procedure to reproduce our
work: the process is shown in the Emperical study section, datasets and replication package
are available online. Also, we address the randomness of our results by starting the
retraining runs for each data point from their respective initial weights (from original
model weights for AR and AF, and from scratch for OAR).

Two threats to internal validity are the implementation of the studied DL models, as
well as the computation of the metrics. We used available replication packages from the
authors of the metrics, using the same configurations they used for the experiments to
minimize this risk. Also, different models are used with different datasets, mitigating that
the results of our study of guidance metrics and configurations are caused accidentally.

Threats to external validity stem mainly from the number of datasets, models and
adversarial generation algorithms considered. Our results depend also on the datasets, the
type of architecture considered, and the device used for training. We believe our results are
applicable to image classification datasets. Some of these threats are addressed by the use of
five image datasets, several state-of-the-art metrics and three adversarial attacks widely
used by the scientific community. Regarding the architecture type, as the adversarial inputs
can be generalized across different of types of architectures (Goodfellow, Shlens & Szegedy,
2014) and we use them for the retraining, we also believe that results for other architecture
types could be similar to the results for CNN architecture, only further experiments can
reduce this threat. Furthermore, our research findings are focused on guiding retraining to
address adversarial inputs. Thus, it is possible that our results may not be applicable to
other related problems, such as test selection. Additionally, it should be noted that in
certain models, metrics derived from softmax may not be an adequate proxy for
uncertainty (Gal & Ghahramani, 2016).

CONCLUSIONS AND FUTURE WORK
In this work, we have studied DL testing metrics for guiding the retraining of models, and
we adapted the models’ weights to be aware of adversarial inputs, as the retraining process
involves adjusting the weights to better handle them. We performed an empirical study
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with the metrics and also considered three different configurations of retraining against
adversarial inputs and did a comparison of the metrics and the configurations. In
summary, we observe that (i) the models are increasing their accuracy against the
augmented test set with adversarial inputs as it was sought in the objectives of this work,
and (ii) there are computational benefits of using certain metrics and configurations.

The empirical study showed that the uncertainty metrics (such as DG and SE) as
guidance for a retraining phase are useful for data scientists when using the following
configuration: adversarial retraining from original model weights.

With the previous configuration and metrics, we can improve the accuracy of the
models against adversarial inputs by up to 13.3% on the GTSRB dataset, 7.7% on the Intel
dataset, 14.4% on the CIFAR-10 dataset, 1.5% on the MNIST dataset and 9.0% on the
Fashion-MNIST dataset without the need of using many inputs. Therefore, this can be
done by using 34.7%, 73.8%, 30%, 25% and 75% (similar accuracy gain achieved since
using 30% unlike Intel dataset) of the available inputs, on the GTSRB, Intel, CIFAR-10,
MNIST and Fashion-MNIST datasets, respectively.

Concerning SA metrics, DSA presents competitive values for dependent variables
except for the execution time variable. Using random can guide to similar levels of
accuracy but when using the recommended configuration, the computational benefits of
using uncertainty metrics are that fewer inputs are required as discussed above in
percentage, which in turn, translates into fewer adversarial inputs created. Regarding the
NC metric, we do not recommend the use of it as it presents the greatest disadvantages on
the studied variables. In cases where one-step adversarial retraining from scratch is
considered, it can be a time-consuming process as it requires using almost 100% of the
inputs to achieve similar accuracy to the recommended configuration.

Additionally, we revealed that the size of the dataset is important when implementing
the recommended metrics and configuration. Taking this into account, we need to assess
whether it would be worth calculating the metrics when using only small datasets.

In the next step, the reproduction of our experiments on different datasets of varied
sizes, unbalanced datasets, and also non-images datasets (Kim& Yoo, 2021) are required to
generalize our findings. Moreover, future experiments should study the effect of the dataset
size on the studied metrics. Particularly, experiments with other DL architectures are
required to confirm or reject that our findings can be used across different architectures.
Also, our results should be compared to guided retraining runs using different testing
metrics such as new refinements of SA (Kim et al., 2020; Weiss, Chakraborty & Tonella,
2021; Ouyang et al., 2021) or other uncertainty-based metrics (Guo et al., 2022a).

While the results of our study provide meaningful outcomes, there are several
dimensions to empirically explore in the future. Thus, it would be relevant to evaluate this
type of retraining process against adversarial inputs in the context of continual learning
(CL), as there is scarce research (Khan et al., 2022b; Bai et al., 2023; Chou, Huang & Lee,
2022; Khan, Bouaynaya & Rasool, 2022a) in addressing adversarial inputs for CL methods
(De Lange et al., 2021). Additionally, it would be valuable to study the effects of adversarial
attacks, which utilize distinct algorithms and have different computational complexity
(Ren et al., 2020).
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