Rewicki, Ferdinand und Denzler, Joachim und Niebling, Julia (2023) Unsupervised Anomaly Detection for Space Gardening. Advances in Artificial Intelligence for Aerospace Engineering, 2023-05-30, Paris. (nicht veröffentlicht)
Dies ist die aktuellste Version dieses Eintrags.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The EDEN Roadmap at DLR aims at building a Bio-regenerative Life Support System (BLSS) for future space missions within the current decade. To ensure the safe and stable operation of the BLSS, the need for automated system monitoring in general and, in particular, robust anomaly detection is apparent. While the abundance of available methods makes it difficult to choose the most appropriate method for a specific application, each method has its strengths in detecting anomalies of different types. The decision becomes even more difficult if annotated data is not available that could be used for model selection. To address this challenge, we compared six unsupervised anomaly detection methods of varying complexity on the UCR anomaly archive benchmark. The goal was to determine whether more complex methods perform better and if certain methods are better suited to specific anomaly types. To validate our findings in the BLSS domain, we applied the best-performing methods to telemetry data collected from the EDEN ISS research greenhouse, which operated from 2018 - 2021 in Antarctica.
elib-URL des Eintrags: | https://elib.dlr.de/201401/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Unsupervised Anomaly Detection for Space Gardening | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 30 Mai 2023 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | nicht veröffentlicht | ||||||||||||||||
Stichwörter: | time series, anomaly detection, unsupervised, telemetry | ||||||||||||||||
Veranstaltungstitel: | Advances in Artificial Intelligence for Aerospace Engineering | ||||||||||||||||
Veranstaltungsort: | Paris | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsdatum: | 30 Mai 2023 | ||||||||||||||||
Veranstalter : | ONERA / DLR | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - EDEN ISS Follow-on | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||
Hinterlegt von: | Rewicki, Ferdinand | ||||||||||||||||
Hinterlegt am: | 22 Dez 2023 08:35 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:01 |
Verfügbare Versionen dieses Eintrags
- Unsupervised Anomaly Detection for Space Gardening. (deposited 22 Dez 2023 08:35) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags