Chen, Sining und Shi, Yilei und Xiong, Zhitong und Zhu, Xiao Xiang (2023) HTC-DC Net: Monocular Height Estimation From Single Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 61, Seiten 1-18. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3321255. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10294289
Kurzfassung
Three-dimensional geoinformation is of great significance for understanding the living environment; however, 3-D perception from remote sensing data, especially on a large scale, is restricted, mainly due to the high costs of 3-D sensors such as light detection and ranging (LiDAR). To tackle this problem, we propose a method for monocular height estimation from optical imagery, which is currently one of the richest sources of remote sensing data. As an ill-posed problem, monocular height estimation requires well-designed networks for enhanced representations to improve the performance. Moreover, the distribution of height values is long-tailed with the low-height pixels, e.g., the background (BG), as the head, and thus, trained networks are usually biased and tend to underestimate building heights. To solve the problems, instead of formalizing the problem as a regression task, we propose HTC-DC Net following the classification–regression paradigm, with the head-tail cut (HTC) and the distribution-based constraints (DCs) as the main contributions. HTC-DC Net is composed of the backbone network as the feature extractor, the HTC-AdaBins module, and the hybrid regression process. The HTC-AdaBins module serves as the classification phase to determine bins adaptive to each input image. It is equipped with a vision transformer (ViT) encoder to incorporate local context with holistic information and involves an HTC to address the long-tailed problem in monocular height estimation for balancing the performances of foreground (FG) and BG pixels. The hybrid regression process does the regression via the smoothing of bins from the classification phase, which is trained via DCs. The proposed network is tested on three datasets of different resolutions, namely ISPRS Vaihingen (0.09 m), Data Fusion Contest 19 (DFC19) (1.3 m), and Global Building Height (GBH) (3 m). The experimental results show the superiority of the proposed network over existing methods by large margins. Extensive ablation studies demonstrate the effectiveness of each design component. The codes and trained models are published at https://github.com/zhu-xlab/HTC-DC-Net
elib-URL des Eintrags: | https://elib.dlr.de/201223/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | HTC-DC Net: Monocular Height Estimation From Single Remote Sensing Images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Oktober 2023 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 61 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2023.3321255 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-18 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Estimation, Task Analysis, Three dimensional displays, Remote sensing, Optical sensors, Optical imaging, buildings | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Zappacosta, Antony | ||||||||||||||||||||
Hinterlegt am: | 10 Jan 2024 17:12 | ||||||||||||||||||||
Letzte Änderung: | 11 Jan 2024 13:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags