Ferreira de Carvalho, Osmar Luiz und Olino de Albuquerque, Anesmar und Saiaka Luiz, Argelica und Guimarães Ferreira, Pedro Henrique und Mou, LiChao und Guerreiro e Silva, Daniel und Abílio de Carvalho Junior, Osmar (2023) A Data-Centric Approach for Rapid Dataset Generation Using Iterative Learning and Sparse Annotations. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5650-5653. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10281632.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10281632
Kurzfassung
This study investigates the application of iterative sparse annotations for semantic segmentation in remote-sensing imagery, focusing on minimizing the laborious and expensive data labeling process. By leveraging Geographic Information Systems (GIS), we implemented circular polygon shapefiles to label portions of each class, attributing a value of -1 outside these polygons. The model training used the simplified BSB Aerial Dataset with eight classes. The semantic segmentation model was U-Net architecture with the Efficient-net-B7 backbone and a modified cross-entropy loss function. Our results showed promising improvement, particularly in error-prone classes, with the iterative addition of more samples. This approach suggests a quicker method for dataset creation using sparse, iteratively enhanced annotations. Future work will aim to implement further iterative rounds to approximate the results of continuous labeling, thereby enhancing the efficiency of semantic segmentation in large-scale remote-sensing images.
elib-URL des Eintrags: | https://elib.dlr.de/201205/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | A Data-Centric Approach for Rapid Dataset Generation Using Iterative Learning and Sparse Annotations | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10281632 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 5650-5653 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Training, Annotations, Semantic segmentation, Training data, Predictive models, Sensors, Iterative methods | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Pasadena, CA, USA | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Zappacosta, Antony | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 10 Jan 2024 16:30 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags