Fogelberg, Katharina und Chamarthi, Sireesha und Maron, Roman C. und Niebling, Julia und Brinker, Titus J. (2023) Domain shifts in dermoscopic skin cancer datasets: Evaluation of essential limitations for clinical translation. New Biotechnology, 76, Seiten 106-117. Elsevier. doi: 10.1016/j.nbt.2023.04.006. ISSN 1871-6784.
PDF
- Verlagsversion (veröffentlichte Fassung)
8MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1871678423000213
Kurzfassung
he limited ability of Convolutional Neural Networks to generalize to images from previously unseen domains is a major limitation, in particular, for safety-critical clinical tasks such as dermoscopic skin cancer classification. In order to translate CNN-based applications into the clinic, it is essential that they are able to adapt to domain shifts. Such new conditions can arise through the use of different image acquisition systems or varying lighting conditions. In dermoscopy, shifts can also occur as a change in patient age or occurrence of rare lesion localizations (e.g. palms). These are not prominently represented in most training datasets and can therefore lead to a decrease in performance. In order to verify the generalizability of classification models in real world clinical settings it is crucial to have access to data which mimics such domain shifts. To our knowledge no dermoscopic image dataset exists where such domain shifts are properly described and quantified. We therefore grouped publicly available images from ISIC archive based on their metadata (e.g. acquisition location, lesion localization, patient age) to generate meaningful domains. To verify that these domains are in fact distinct, we used multiple quantification measures to estimate the presence and intensity of domain shifts. Additionally, we analyzed the performance on these domains with and without an unsupervised domain adaptation technique. We observed that in most of our grouped domains, domain shifts in fact exist. Based on our results, we believe these datasets to be helpful for testing the generalization capabilities of dermoscopic skin cancer classifiers.
elib-URL des Eintrags: | https://elib.dlr.de/201124/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Domain shifts in dermoscopic skin cancer datasets: Evaluation of essential limitations for clinical translation | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 23 September 2023 | ||||||||||||||||||||||||
Erschienen in: | New Biotechnology | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 76 | ||||||||||||||||||||||||
DOI: | 10.1016/j.nbt.2023.04.006 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 106-117 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 1871-6784 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Domain shift; Skin lesion classification; Dermoscopic image; Unsupervised domain adaptation; Generalization; Clinical translation | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Grundlagenforschung im Bereich Maschinelles Lernen | ||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||||||
Hinterlegt von: | Niebling, Julia | ||||||||||||||||||||||||
Hinterlegt am: | 22 Dez 2023 09:07 | ||||||||||||||||||||||||
Letzte Änderung: | 03 Jun 2024 15:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags