Osmar Luiz, Ferreira De Carvalho und De Albuquerque, Anesmar Olino und De Carvalho Junior, Osmar Abílio und Mou, LiChao und Guerreiro e Silva, Daniel (2023) Amodal Segmentation Considering Visible and Non-Visible Elements of Urban Surfaces. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5676-5679. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10282860.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10282860
Kurzfassung
This study addresses the challenge of amodal segmentation in computer vision, a change in basic assumptions towards perceiving objects holistically, even when partially occluded, deviating from the traditional modal perspective that predominantly focuses on visible elements. Thus, we propose a new approach for the amodal segmentation of top-view aerial images, with particular attention to the first layer of elements, constituted by asphalt and natural soils, normally occluded by different objects (trees, buildings, and vehicles). This proposed methodology is data-centric, assigning weights to specific image sections and distinguishing non-visible elements. The best model used the U-Net architecture with Efficient-net-B7 as the backbone and can accurately classify occluded segments, achieving an Intersection over Union (IoU) greater than 80% for most classes. The developed method provides a basis for exploring amodal segmentation based on data-centric models, impacting our understanding of complex and occlusion-prone environments, such as urban environments.
elib-URL des Eintrags: | https://elib.dlr.de/201115/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Amodal Segmentation Considering Visible and Non-Visible Elements of Urban Surfaces | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282860 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 5676-5679 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Measurament, Computer vision, Semantic segmentation, Urban areas, Semantics, Geoscience and remote sensing, Computer Architecture | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||||||||||
Veranstaltungsort: | Pasadena, CA, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Zappacosta, Antony | ||||||||||||||||||||||||
Hinterlegt am: | 10 Jan 2024 16:27 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags