elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Description of the Silicon Voltage Hysteresis with a Visco-Elastoplastic SEI Model

Köbbing, Lukas und Latz, Arnulf und Horstmann, Birger (2023) Description of the Silicon Voltage Hysteresis with a Visco-Elastoplastic SEI Model. HIU Biennial Meeting, 2023-07-11 - 2023-07-12, Ulm, Deutschland.

[img] PDF - Nur DLR-intern zugänglich
3MB

Kurzfassung

The solid-electrolyte interphase (SEI) plays a crucial role in the performance and lifespan of lithium-ion batteries. Despite ongoing research, key aspects of this passivation layer remain unclear. Our study focuses on understanding SEI growth mechanisms and the mechanical behavior to improve battery lifetime and performance, contributing to more sustainable energy storage. In advanced lithium-ion batteries, capacity fade during open-circuit storage results mainly from SEI growth. We investigate electron and solvent diffusion mechanisms to describe SEI growth, considering the observed capacity loss depending on state-of-charge (SOC) and time. Our simulations reveal that electron diffusion explains both SOC dependence and time behavior, while solvent diffusion reproduces only one aspect [1]. This detailed understanding, including self-discharge effects, can also describe experiments with significant capacity fades. Looking ahead to applications such as aviation, the development of next-generation of lithium-ion batteries with increased storage capacity is imperative. Silicon, with its high theoretical capacity, is a promising candidate for future anodes. However, silicon anodes undergo substantial volume expansion that the SEI has to withstand. Consequently, significant strains and plastic flow emerge within the SEI [2]. Moreover, silicon exhibits an open-circuit voltage hysteresis, posing challenges due to detrimental heat generation and for accurately estimating the state-of-charge. While previous explanations focused on plastic models for silicon thin films and large particles, amorphous silicon nanoparticles were not considered. Our chemo-mechanical model of a silicon nanoparticle and SEI successfully replicates the observed open-circuit potential hysteresis in experiments [3]. In addition, viscous behavior of the SEI explains the voltage difference between slow cycling and the relaxed voltage in GITT experiments. 1. Köbbing, L.; Latz, A.; Horstmann, B. J. Power Sources 2023, DOI: 10.1016/j.jpowsour.2023.232651. 2. Kolzenberg, L.; Latz, A.; Horstmann, B. Batter. Supercaps 2022, 5, DOI: 10.1002/batt.202100216. 3. Köbbing, L.; Latz, A.; Horstmann, B. ArXiv Preprint. 2023, DOI: 10.48550/arXiv.2305.17533.

elib-URL des Eintrags:https://elib.dlr.de/200914/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Description of the Silicon Voltage Hysteresis with a Visco-Elastoplastic SEI Model
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Köbbing, LukasLukas.Koebbing (at) dlr.dehttps://orcid.org/0000-0002-1806-6732148959979
Latz, ArnulfArnulf.Latz (at) dlr.dehttps://orcid.org/0000-0003-1449-8172NICHT SPEZIFIZIERT
Horstmann, Birgerbirger.horstmann (at) dlr.dehttps://orcid.org/0000-0002-1500-0578148959980
Datum:2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:lithium-ion battery; solid-electrolyte interphase (SEI); SEI mechanics; visco-elastoplastic model; chemo-mechanical particle model; SEI growth; silicon voltage hysteresis
Veranstaltungstitel:HIU Biennial Meeting
Veranstaltungsort:Ulm, Deutschland
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:11 Juli 2023
Veranstaltungsende:12 Juli 2023
Veranstalter :Helmholtz-Institut Ulm
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Prozesse, E - Elektrochemische Speicher
Standort: Ulm
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Köbbing, Lukas
Hinterlegt am:18 Dez 2023 17:52
Letzte Änderung:24 Apr 2024 21:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.