Vellmer, Jan und Mandl, Peter und Bellmann, Tobias und Balluff, Maximilian und Weber, Manuel und Döschl, Alexander und Keller, Max-Emanuel (2023) A Machine Learning Approach to Enterprise Matchmaking Using Multilabel Text Classification Based on Semi-structured Website Content. In: 25th International Conference on Information Integration and Web Intelligence, iiWAS 2023, 14416. Springer. 25th International Conference on Information Integration and Web Intelligence (iiWAS 2023), 2023-12-04 - 2023-12-06, Bali, Indonesien. doi: 10.1007/978-3-031-48316-5_44. ISBN 978-303148315-8. ISSN 0302-9743.
PDF
- Nur DLR-intern zugänglich
488kB |
Offizielle URL: https://rdcu.be/dtizd
Kurzfassung
Finding the right business partner to drive innovation or acquire technology transfer is a labor and time-intensive process. To simplify this process, there is a need for improved methods of automated matchmaking that can quickly identify the best potential collaboration partners. This paper presents a novel approach for semi-automated business matchmaking between companies and research institutes, that is applied to a first case study. For this purpose, we compare two transformer-based text classification models and evaluate how dataset quality affects few-shot learning performance. Flair's TARS classifier performed very well in our use case, requiring only 40 examples per class to achieve an F1 score of about 90%. This is already very close to the Hugging Face standard text classifier, which achieved an F1 score of 92% with much more annotation effort. The results show that few-shot learning models like TARS can achieve accurate results even with few training samples compared to regular transformer-based language models. Our novel approach allows the time-consuming and labor-intensive task of manual partner matchmaking to be significantly reduced.
elib-URL des Eintrags: | https://elib.dlr.de/200899/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | A Machine Learning Approach to Enterprise Matchmaking Using Multilabel Text Classification Based on Semi-structured Website Content | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 22 November 2023 | ||||||||||||||||||||||||||||||||
Erschienen in: | 25th International Conference on Information Integration and Web Intelligence, iiWAS 2023 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Band: | 14416 | ||||||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-031-48316-5_44 | ||||||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Science | ||||||||||||||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||||||||||||||
ISBN: | 978-303148315-8 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Match-Making, Machine Learning, Simulation, Robotics | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | 25th International Conference on Information Integration and Web Intelligence (iiWAS 2023) | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Bali, Indonesien | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 4 Dezember 2023 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 6 Dezember 2023 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Hochdynamische Systeme | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Raumfahrt-Systemdynamik | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Bellmann, Tobias | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 12 Dez 2023 12:44 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags