Rautela, Mahindra und Senthilnath, J und Huber, Armin und Gopalakrishnan, S (2022) Towards deep generation of guided wave representations for composite materials. IEEE Transactions on Artificial Intelligence. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TAI.2022.3229653. ISSN 2691-4581.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
5MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9991053
Kurzfassung
Laminated composite materials are widely used in most fields of engineering. Wave propagation analysis plays an essential role in understanding the short-duration transient response of composite structures. The forward physics-based models are utilized to map from elastic properties space to wave propagation behavior in a laminated composite material. Due to the high-frequency, multi-modal, and dispersive nature of the guided waves, the physics-based simulations are computationally demanding. It makes property prediction, generation, and material design problems more challenging. In this work, a forward physics-based simulator such as the stiffness matrix method is utilized to collect group velocities of guided waves for a set of composite materials. A variational autoencoder (VAE)-based deep generative model is proposed for the generation of new and realistic polar group velocity representations. It is observed that the deep generator is able to reconstruct unseen representations with very low mean square reconstruction error. Global Monte Carlo and directional equally-spaced samplers are used to sample the continuous, complete and organized low-dimensional latent space of VAE. The sampled point is fed into the trained decoder to generate new polar representations. The network has shown exceptional generation capabilities. It is also seen that the latent space forms a conceptual space where different directions and regions show inherent patterns related to the generated representations and their corresponding material properties.
elib-URL des Eintrags: | https://elib.dlr.de/200375/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Towards deep generation of guided wave representations for composite materials | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 16 Dezember 2022 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Artificial Intelligence | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/TAI.2022.3229653 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 2691-4581 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Composite materials, Deep generative model, Variational autoencoder, Wave propagation | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturwerkstoffe und Bauweisen | ||||||||||||||||||||
Standort: | Augsburg | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Bauweisen und Strukturtechnologie > Automation und Produktionstechnologie | ||||||||||||||||||||
Hinterlegt von: | Huber, Armin | ||||||||||||||||||||
Hinterlegt am: | 06 Dez 2023 12:02 | ||||||||||||||||||||
Letzte Änderung: | 06 Feb 2024 08:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags