Blanco Bohorquez, Luis Armando and Alhamwi, Alaa and Schiricke, Björn and Hoffschmidt, Bernhard (2023) Data-driven classification of Urban Energy Units for district-level heating and electricity demand analysis. Sustainable Cities and Society (101). Elsevier. doi: 10.1016/j.scs.2023.105075. ISSN 2210-6707.
PDF
- Published version
5MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S2210670723006856
Abstract
The building sector is a significant contributor to global energy consumption and accounts for approximately one-third of total greenhouse gas emissions. While building energy analysis has traditionally focused on individual buildings, analyzing larger settlements, such as districts or neighbors, offers additional opportunities. The objective of this study is to define and classify typical urban areas for energy analysis, referred to in this paper as Urban Energy Units (UEUs), which represent geographical regions within a city with specific building characteristics, settlement patterns and energy demand. Sixteen different UEUs were classified using literature and open data. The proposed methodology leverages open-source data and uses a random forest model to enhance missing building properties of the building stock such as building age and construction type. It further subdivides the study area into geographically defined sections, and deploys a decision tree model to classify these sections into the sixteen different UEUs. These UEUs enable the creation of energy districts in a modular manner and flexible for its use in any given area. This study demonstrates the practical implications related to the 2023 german municipality heating plan. The methodology was applied in Oldenburg, a mid-sized German city. The city was subdivided into a total of 8249 UEUs, with the detailed results for energy demand presented in this report.
Item URL in elib: | https://elib.dlr.de/200348/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Data-driven classification of Urban Energy Units for district-level heating and electricity demand analysis | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 29 November 2023 | ||||||||||||||||||||
Journal or Publication Title: | Sustainable Cities and Society | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1016/j.scs.2023.105075 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 2210-6707 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | urban energy systems, urban energy units, electricity demand, heat demand, district level, random-forest, open data | ||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||
HGF - Program Themes: | Energy System Transformation | ||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||
DLR - Research theme (Project): | E - Systems Analysis and Technology Assessment | ||||||||||||||||||||
Location: | Oldenburg | ||||||||||||||||||||
Institutes and Institutions: | Institute of Networked Energy Systems > Energy Systems Analysis, OL | ||||||||||||||||||||
Deposited By: | Medjroubi, Dr Wided | ||||||||||||||||||||
Deposited On: | 04 Dec 2023 09:44 | ||||||||||||||||||||
Last Modified: | 26 Mar 2024 13:24 |
Repository Staff Only: item control page