elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production

Dietrich, Ralph-Uwe and Heimann, Nathanael and Maier, Simon and Rahmat, Yoga Pranata and Fleischmann, Francisco Tomas (2023) Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production. DGV-USTV Joint Annual Meeting 2023, 2023-05-22 - 2023-05-24, Orléans, France.

[img] PDF
1MB

Abstract

The container glassEuropean industry is challenged by the goal to be “fit for 55”, and even more by complete climate neutrality until 2045/50 and requires individual solutions for each sector. For example, CO2 emissions of the glass industry (around 22 Mio t per year in Europe) originate primarily from two sources, i.e., fuel-related emissions, and process-related emissions caused by carbonatic batch ingredients. Although, fuel-related emissions can be avoided by, e.g., the implementation of hydrogen combustion or all-electric melting (AEM), these approaches do not address process-related emissions. Moreover, the knowledge on hydrogen-based glass production is still limited, with open questions regarding refractive materials and redox behavior of the melt. AEM, on the other hand, is limited to comparably small tonnages (less than 250 t saleable glass per day) and cullet contents in the batch below 60 %. Additionally, since the redox state of AEM glass is difficult to control, this process is unsuitable for redox-sensitive amber coloring. The process-related CO2 emissions could theoretically be avoided by replacing carbonatic batch ingredient with, e.g., hydroxides. However, the production of hydroxides requires often geological carbonates as raw materials (lime, dolomite), or is very cost- and energy-intensive (NaOH, via chlor-alkali process). In contrast, implementation of Carbon Capture and Utilization (CCU) with e-fuel synthesis via electrolytic produced zed hydrogen addresses both emissions sources without constraining the glass production. Here, we convert the CO2-rich flue gas stream (above 95% dry gas composition for oxy-fuel combustion) with on-site generated hydrogen into a storable fuel. Finally, we close the CCU cycle, as we use the synthesized e-fuel to feed the combustion for glass melting heat. With this, we generate a saleable product from the process-related CO2 surplus and at the same time avoid all CO2 emissions. To assess the viability of CCU cycles in the glass production, we perform a techno-economic analysis on a simulated glass production process with integrated CO2 recovery and subsequent fuel synthesis was performed. We evaluate the technological and economic advantages of CCU cycles for several state-of-the-art technology chains and analyze the influence of different electricity price scenarios on the production cost. The most suitable technologies, including gas cleaning, fuel synthesis and hydrogen production, are converted into a Python model and simulated in Aspen Plus®. Subsequently, the techno-economic performance is estimated with the DLR in-house tool TEPET. As regenerative grid electricity prices significantly fluctuate over time, we additionally develop an algorithm was developed to optimize the plant’s purchased electricity pricepurchasing, using trading at the German day-ahead market. With a combination of over-dimensioning the electrolyzer and variation of ying the hydrogen storage capacity, we lower the effective overall electricity costs can be minimized by avoiding periods of high electricity prices. With these results, we enable aAn objective and transparent comparison of multiple plant layouts, and thus, can help to select the most suitable solution for the each glass industry production site in different scenarios.

Item URL in elib:https://elib.dlr.de/200283/
Document Type:Conference or Workshop Item (Speech)
Title:Techno-economic assessment of carbon capture and utilization concepts for a CO2 emission-free glass production
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Dietrich, Ralph-UweUNSPECIFIEDhttps://orcid.org/0000-0001-9770-4810UNSPECIFIED
Heimann, NathanaelUNSPECIFIEDhttps://orcid.org/0000-0001-8660-0063UNSPECIFIED
Maier, SimonUNSPECIFIEDhttps://orcid.org/0000-0001-8660-0063UNSPECIFIED
Rahmat, Yoga PranataUNSPECIFIEDhttps://orcid.org/0009-0002-8037-5218UNSPECIFIED
Fleischmann, Francisco TomasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:22 May 2023
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:Techno-economic assessment carbon capture and utilization (CCU) e-fuel synthesis carbon-neutral glass production process
Event Title:DGV-USTV Joint Annual Meeting 2023
Event Location:Orléans, France
Event Type:international Conference
Event Start Date:22 May 2023
Event End Date:24 May 2023
Organizer:French Union for Science and Glass Technology (USTV) and German Society of Glass Technology (DGG)
HGF - Research field:Energy
HGF - Program:Energy System Design
HGF - Program Themes:Digitalization and System Technology
DLR - Research area:Energy
DLR - Program:E SY - Energy System Technology and Analysis
DLR - Research theme (Project):E - Energy System Technology
Location: Stuttgart
Institutes and Institutions:Institute of Engineering Thermodynamics > Energy System Integration
Deposited By: Dietrich, Dr. Ralph-Uwe
Deposited On:18 Dec 2023 15:17
Last Modified:24 Apr 2024 21:00

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.