Kamp, Tobias und Ultsch, Johannes und Brembeck, Jonathan (2023) Closing the Sim-to-Real Gap with Physics-Enhanced Neural ODEs. In: 20th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2023, 2, Seiten 77-84. SCITEPRESS. 20th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2023-11-13 - 2023-11-15, Rom, Italien. doi: 10.5220/0012160100003543. ISBN 978-989-758-670-5. ISSN 2184-2809.
|
PDF
516kB |
Offizielle URL: https://www.scitepress.org/PublicationsDetail.aspx?ID=WEuuBm/l9Og=&t=1
Kurzfassung
A central task in engineering is the modelling of dynamical systems. In addition to first-principle methods, data-driven approaches leverage recent developments in machine learning to infer models from observations. Hybrid models aim to inherit the advantages of both, white- and black-box modelling approaches by combining the two methods in various ways. In this sense, Neural Ordinary Differential Equations (NODEs) proved to be a promising approach that deploys state-of-the-art ODE solvers and offers great modelling flexibility. In this work, an exemplary NODE setup is used to train low-dimensional artificial neural networks with physically meaningful outputs to enhance a dynamical model. The approach maintains the physical integrity of the model and offers the possibility to enforce physical laws during the training. Further, this work outlines how a confidence interval for the learned functions can be inferred based on the deployed training data. The robustness of the approach against noisy data and model uncertainties is investigated and a way to optimize model parameters alongside the neural networks is shown. Finally, the training routine is optimized with mini-batching and sub-sampling, which reduces the training duration in the given example by over 80 %.
| elib-URL des Eintrags: | https://elib.dlr.de/200100/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Closing the Sim-to-Real Gap with Physics-Enhanced Neural ODEs | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | November 2023 | ||||||||||||||||
| Erschienen in: | 20th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2023 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| Band: | 2 | ||||||||||||||||
| DOI: | 10.5220/0012160100003543 | ||||||||||||||||
| Seitenbereich: | Seiten 77-84 | ||||||||||||||||
| Herausgeber: |
| ||||||||||||||||
| Verlag: | SCITEPRESS | ||||||||||||||||
| Name der Reihe: | Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics | ||||||||||||||||
| ISSN: | 2184-2809 | ||||||||||||||||
| ISBN: | 978-989-758-670-5 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Dynamical Systems, Hybrid Modelling, Neural Ordinary Differential Equations, Scientific Machine Learning, Physics-Enhanced Neural ODEs | ||||||||||||||||
| Veranstaltungstitel: | 20th International Conference on Informatics in Control, Automation and Robotics (ICINCO) | ||||||||||||||||
| Veranstaltungsort: | Rom, Italien | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 13 November 2023 | ||||||||||||||||
| Veranstaltungsende: | 15 November 2023 | ||||||||||||||||
| Veranstalter : | INSTICC | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik | ||||||||||||||||
| Hinterlegt von: | Kamp, Tobias | ||||||||||||||||
| Hinterlegt am: | 07 Dez 2023 14:55 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 21:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags