Kamp, Tobias und Ultsch, Johannes und Brembeck, Jonathan (2023) Closing the Sim-to-Real Gap with Physics-Enhanced Neural ODEs. In: 20th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2023, 2, Seiten 77-84. SCITEPRESS. 20th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2023-11-13 - 2023-11-15, Rom, Italien. doi: 10.5220/0012160100003543. ISBN 978-989-758-670-5. ISSN 2184-2809.
PDF
516kB |
Offizielle URL: https://www.scitepress.org/PublicationsDetail.aspx?ID=WEuuBm/l9Og=&t=1
Kurzfassung
A central task in engineering is the modelling of dynamical systems. In addition to first-principle methods, data-driven approaches leverage recent developments in machine learning to infer models from observations. Hybrid models aim to inherit the advantages of both, white- and black-box modelling approaches by combining the two methods in various ways. In this sense, Neural Ordinary Differential Equations (NODEs) proved to be a promising approach that deploys state-of-the-art ODE solvers and offers great modelling flexibility. In this work, an exemplary NODE setup is used to train low-dimensional artificial neural networks with physically meaningful outputs to enhance a dynamical model. The approach maintains the physical integrity of the model and offers the possibility to enforce physical laws during the training. Further, this work outlines how a confidence interval for the learned functions can be inferred based on the deployed training data. The robustness of the approach against noisy data and model uncertainties is investigated and a way to optimize model parameters alongside the neural networks is shown. Finally, the training routine is optimized with mini-batching and sub-sampling, which reduces the training duration in the given example by over 80 %.
elib-URL des Eintrags: | https://elib.dlr.de/200100/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Closing the Sim-to-Real Gap with Physics-Enhanced Neural ODEs | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | November 2023 | ||||||||||||||||
Erschienen in: | 20th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 2 | ||||||||||||||||
DOI: | 10.5220/0012160100003543 | ||||||||||||||||
Seitenbereich: | Seiten 77-84 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | SCITEPRESS | ||||||||||||||||
Name der Reihe: | Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics | ||||||||||||||||
ISSN: | 2184-2809 | ||||||||||||||||
ISBN: | 978-989-758-670-5 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Dynamical Systems, Hybrid Modelling, Neural Ordinary Differential Equations, Scientific Machine Learning, Physics-Enhanced Neural ODEs | ||||||||||||||||
Veranstaltungstitel: | 20th International Conference on Informatics in Control, Automation and Robotics (ICINCO) | ||||||||||||||||
Veranstaltungsort: | Rom, Italien | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 13 November 2023 | ||||||||||||||||
Veranstaltungsende: | 15 November 2023 | ||||||||||||||||
Veranstalter : | INSTICC | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Fahrzeug-Systemdynamik | ||||||||||||||||
Hinterlegt von: | Kamp, Tobias | ||||||||||||||||
Hinterlegt am: | 07 Dez 2023 14:55 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags