elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Exact continuum representation of long-range interacting systems and emerging exotic phases in unconventional superconductors

Buchheit, Andreas A. und Keßler, Torsten und Schuhmacher, Peter Ken und Fauseweh, Benedikt (2023) Exact continuum representation of long-range interacting systems and emerging exotic phases in unconventional superconductors. Physical Review Research, 5 (043065). American Physical Society. doi: 10.1103/PhysRevResearch.5.043065. ISSN 2643-1564.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5.043065

Kurzfassung

Continuum limits are a powerful tool in the study of many-body systems, yet their validity is often unclear when long-range interactions are present. In this paper, we rigorously address this issue and put forth an exact representation of long-range interacting lattices that separates the model into a term describing its continuous analog, the integral contribution, and a term that fully resolves the microstructure, the lattice contribution. For any system dimension, for any lattice, for any power-law interaction, and for linear, nonlinear, and multiatomic lattices, we show that the lattice contribution can be described by a differential operator based on the multidimensional generalization of the Riemann zeta function, namely, the Epstein zeta function. We employ our representation in Fourier space to solve the important problem of long-range interacting unconventional superconductors. We derive a generalized Bardeen-Cooper-Schrieffer gap equation and find emerging exotic phases in two-dimensional superconductors with topological phase transitions. Finally, we utilize nonequilibrium Higgs spectroscopy to analyze the impact of long-range interactions on the collective excitations of the condensate. We show that the interactions can be used to fine tune the Higgs mode's stability, ranging from exponential decay of the oscillation amplitude up to complete stabilization. By providing a unifying framework for long-range interactions on a lattice, both classical and quantum, our research can guide the search for exotic phases of matter across different fields.

elib-URL des Eintrags:https://elib.dlr.de/200037/
Dokumentart:Zeitschriftenbeitrag
Titel:Exact continuum representation of long-range interacting systems and emerging exotic phases in unconventional superconductors
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Buchheit, Andreas A.buchheit (at) num.uni-sb.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Keßler, Torstent.kessler (at) tue.nlNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schuhmacher, Peter KenPeter.Schuhmacher (at) dlr.dehttps://orcid.org/0000-0003-1232-4363148466358
Fauseweh, Benediktbenedikt.fauseweh (at) dlr.dehttps://orcid.org/0000-0002-4861-7101NICHT SPEZIFIZIERT
Datum:20 Oktober 2023
Erschienen in:Physical Review Research
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:5
DOI:10.1103/PhysRevResearch.5.043065
Verlag:American Physical Society
ISSN:2643-1564
Status:veröffentlicht
Stichwörter:Long-range interactions Superconductivity Numerics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Quantencomputing
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Schuhmacher, Peter Ken
Hinterlegt am:11 Dez 2023 09:43
Letzte Änderung:15 Dez 2023 12:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.