elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Data-driven classification of Urban Energy Units for district-level heating and electricity demand analysis

Blanco Bohorquez, Luis Armando und Alhamwi, Alaa und Schiricke, Björn und Hoffschmidt, Bernhard (2023) Data-driven classification of Urban Energy Units for district-level heating and electricity demand analysis. Sustainable Cities and Society. Elsevier. doi: 10.1016/j.scs.2023.105075. ISSN 2210-6707.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2210670723006856

Kurzfassung

The building sector is a significant contributor to global energy consumption and accounts for approximately one-third of total greenhouse gas emissions. While building energy analysis has traditionally focused on individual buildings, analyzing larger settlements, such as districts or neighbors, offers additional opportunities. The objective of this study is to define and classify typical urban areas for energy analysis, referred to in this paper as Urban Energy Units (UEUs), which represent geographical regions within a city with specific building’s characteristics, settlement patterns and energy demand. Sixteen different UEUs were classified using literature and open data. The proposed methodology leverages open-source data and uses a random forest model to enhance missing building properties of the building stock such as building age and construction type. It further subdivides the study area into geographically defined sections, and deploys a decision tree model to classify these sections into the sixteen different UEUs. These UEUs enable the creation of energy districts in a modular manner and flexible for its use in any given area. This study demonstrates the practical implications related to the 2023 german municipality heating plan. The methodology was applied in Oldenburg, a mid-sized German city. The city was subdivided into a total of 8249 UEUs, with the detailed results for energy demand presented in this report.

elib-URL des Eintrags:https://elib.dlr.de/200030/
Dokumentart:Zeitschriftenbeitrag
Titel:Data-driven classification of Urban Energy Units for district-level heating and electricity demand analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Blanco Bohorquez, Luis Armandoluis.blancobohorquez (at) dlr.dehttps://orcid.org/0000-0002-2300-8385148177285
Alhamwi, AlaaAlaa.Alhamwi (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schiricke, BjörnBjoern.Schiricke (at) dlr.dehttps://orcid.org/0000-0003-0572-2048148177287
Hoffschmidt, BernhardBernhard.Hoffschmidt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:29 November 2023
Erschienen in:Sustainable Cities and Society
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.scs.2023.105075
Verlag:Elsevier
ISSN:2210-6707
Status:veröffentlicht
Stichwörter:Urban Energy UnitsEnergy districtUrban planningMachine learningOpen-sourceGIS
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Condition Monitoring
Standort: Jülich , Köln-Porz
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme
Institut für Solarforschung > Qualifizierung
Hinterlegt von: Blanco Bohorquez, Luis Armando
Hinterlegt am:06 Dez 2023 12:07
Letzte Änderung:16 Jul 2024 11:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.