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A B S T R A C T

The building sector is a significant contributor to global energy consumption and accounts for approximately
one-third of total greenhouse gas emissions. While building energy analysis has traditionally focused on
individual buildings, analyzing larger settlements, such as districts or neighbors, offers additional opportunities.
The objective of this study is to define and classify typical urban areas for energy analysis, referred to in this
paper as Urban Energy Units (UEUs), which represent geographical regions within a city with specific building’s
characteristics, settlement patterns and energy demand. Sixteen different UEUs were classified using literature
and open data. The proposed methodology leverages open-source data and uses a random forest model to
enhance missing building properties of the building stock such as building age and construction type. It further
subdivides the study area into geographically defined sections, and deploys a decision tree model to classify
these sections into the sixteen different UEUs. These UEUs enable the creation of energy districts in a modular
manner and flexible for its use in any given area. This study demonstrates the practical implications related to
the 2023 german municipality heating plan. The methodology was applied in Oldenburg, a mid-sized German
city. The city was subdivided into a total of 8249 UEUs, with the detailed results for energy demand presented
in this report.
1. Introduction

Cities are responsible for up to 80% of the global energy con-
sumption (DESA, 2019). A third of the total greenhouse gas (GHG)
emissions are related to the building sector, making it an important
target for reducing urban energy consumption. In Germany, heating
and hot water systems account for 84% of the final energy consumption
of the residential sector and contribute to almost a third of the country’s
GHG emissions (IEA, 2020; BPIE, 2015; Statista Search Department,
2022a, 2022b). Germany recently presented a new building energy law
for the municipality heating plan (BMWK, 2020; BMWSB, 2023), where
municipalities are to submit plans for the conversion of the heating
infrastructure to achieve neutrality by 2045. But drawing up a heating
plan takes time, requires a large amount of highly qualified staff and
incurs high costs. Many cities are still in the early stages of municipal
heating planning and are analyzing how high the heat demand is
in the neighborhoods, where a strategic expansion of district heating
and where a decentralized supply, for example via heat pumps, could
be applied (Städtetag, 2023). However, many small communities lack
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the resources mentioned above and are trying to find more effective
solutions.

Deploying energy efficiency strategies can help reduce energy-
related emissions from the building sector and accelerate the commu-
nity heating plan in Germany. One of these strategies is to move the
energy performance targets away from individual buildings towards a
district level. This is because energy analysis of larger settlement units
or districts offers more opportunities than the isolated energetic refur-
bishment of individual buildings (Ahlers, Driscoll, Wibe, & Wyckmans,
2019; Dettmar, Drebes, & Sieber, 2020; Konstantinou & Knaack, 2011;
Shnapp, Paci, & Bertoldi, 2020). Moving from individual buildings
towards a district level approach could bring more opportunities in the
areas of: energy consumption analysis, urban planning, cost-effective
methods for high energy efficiency, coupling of the energy grid with
renewable energy systems and consumption behavior analysis. Further,
energy efficiency measures on an individual building will reduce the
overall demand of the district, coupling these options with technolo-
gies, such as renewable energy systems, local energy networks and
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energy storage can offer overall cost-effective solutions (Shnapp et al.,
2020).

This set-up requires holistic and smart planning. The problem arises
when trying to define the concept of a district or neighborhood within
a city. There is no general definition of a district as the concept may
vary according to quantitative and/or qualitative properties (such as
administrative areas, construction building types, and social or cultural
characteristics). The conventional thinking of a district – as an admin-
istrative region within a city – is not enough when trying to integrate
sustainable energy strategies and energy management approaches in
urban planning in order to minimize overall energy consumption and
CO2 emissions.

The following study focuses on geographically defining existing
urban areas based on shared building and architectural traits. Instead
of defining future energy districts, we will focus on subdividing the ex-
isting urban space into geographical units that contain typical building
characteristics, settlement patterns, and energy demands. These geo-
graphical units will be referred to in this paper as Urban Energy Units
(UEUs). Each UEU characterizes a specific geographical area with
distinct building features, settlement patterns, and energy demands.
The UEUs will serve as the building blocks for creating energy districts
as they can be flexibly combined to define larger geographic areas,
or districts, each possessing its own geographic boundaries, building
features, settlement patterns, and energy requirements.

The main objective of this study is to develop an automated GIS-
based methodology for subdividing any study area into UEUs based
on large-scale open-source data. Statistical and machine learning (ML)
tools will be used to classify urban areas into 16 different UEUs, each
with its own typical building characteristics and settlement patterns.
The main advantage of such methodology is, that it provides a stan-
dardized framework for future energy district analysis by establishing
standardized areas (UEUs) that can be combined in a modular way to
create various district types, adaptable to different geographic contexts
and operational needs. The study’s objectives can be summarized in the
following tasks:

• Generate a building stock database for a study area using avail-
able open-source data.

• Employ various ML and statistical methods to divide the study
area into 16 different UEUs using the generated building stock
and assign corresponding energy demand values.

• Combine UEUs to construct energy districts within the study area.
• Understand the relevance of the UEUs in real-world scenarios,

particularly concerning the municipality heating plan of Ger-
many.

2. Literature review

There is no universally agreed-upon definition for the term ‘‘dis-
trict’’1 in the urban context. Accurately defining districts based on
energy consumption in a standardized manner poses challenges, yet it
is a critical task for modern urban planning. It provides a structured
framework for efficient resource allocation, infrastructure develop-
ment, and policy-making (Shnapp et al., 2020). The ultimate goal
is to reduce CO2 emissions, enhance urban livability, and promote
ustainability. In this section, we offer a concise overview of the ex-
sting literature on the concept of districts in urban planning. We
nvestigate GIS-based and data-driven approaches proposed by other
uthors. Furthermore, we underscore the importance of districts in the
ontext of recent legal changes in Germany, highlighting their central
ole in contemporary urban planning.

1 In the urban context the term ‘‘district’’ is often interchanged with the
erm ‘‘neighborhood’’, in this paper we will only use the first.
2

2.1. Urban context

The urban environment is the physical and social habitat for almost
half of mankind in the present day world. In many regions of the world
almost three quarters of the population live in towns and cities. The
urban environment is highly diverse and dynamic and has strongly
contributed to many aspects of our lives and culture such as social
units, market trade, democracy and in today’s perspective our energy
consumption as well (Boerefijn et al., 2010; Bruegmann, 2019; Couch,
Petschel-Held, & Leontidou, 2008; Hipp, Faris, & Boessen, 2012).

Many cities around the world struggle nowadays to transform their
urban spaces in order to achieve their sustainability goals. Achieving
sustainable urban development is a hugely difficult task to accom-
plish due to its complex and continuously-evolving nature. Initially,
the focus of sustainability assessments within the built environment
was individual buildings, the smallest urban units of a human settle-
ment (Lützkendorf & Balouktsi, 2017). However, the sustainability of
the urban environment poses much more complex issues than solely
the performance of single buildings. Thus, the need to expand the sus-
tainability scope and metrics to larger scales of the built environment
leading to a more targeted focus on neighborhoods or districts as the ap-
propriate geographic scale for intervention. Authors like Adams (1994),
Berardi (2013), Elci, Delgado, Henning, Henze, and Herkel (2018),
Lützkendorf and Balouktsi (2017) have highlighted the advantages
of planning and implementing sustainability principles at the district
scale. They argue that planning at this scale allows for the formulation
of efficient strategies that integrate various factors, including, design-
ing of public and private spaces, optimal transportation and energy
supply, and the dynamics of community interaction. Balouktsi, Lützk-
endorf, Kopfmüller, and Steltzer (2017) explain how the subdivision
of the urban system into smaller units, such as districts, can facilitate
more targeted sustainability transformations. Nevertheless, they also
argue that district-scale sustainable development is an ongoing process
that demands continuous engagement, monitoring, assessment, and
adaptation.

In terms of energy analysis, a district turns out to be of great
interest. Districts align well with the scale of small or medium-sized
energy supply and distribution systems, making them a logical unit
for urban development plans in the context of energy planning (Elci
et al., 2018; Koch, 2010). A comprehensive review of the challenges
and obstacles in energy planning at the urban scale has been presented
by Cajot et al. (2017). Understanding energy demand at the district
scale enables the design of efficient energy management systems, which
have gained relevance with the increasing of decentralized, fluctuating
renewable energy systems, such as photovoltaic modules, solar–thermal
systems and heat pumps.

The concept of districts in urban planning represents a pivotal
shift in addressing the complexities of sustainability within the urban
environment. It acknowledges the multifaceted nature of urban devel-
opment and provides a structured framework for sustainable transfor-
mation, from efficient resource allocation to energy-conscious planning.

2.2. GIS-based and data driven approaches

Urban planning is one of the main applications of Geographical
Information Systems (GIS). Urban planners use GIS both as a spatial
database and as an analysis and modeling tool (Yeh, 1999). With the
increase in user-friendliness and functions of GIS software and the
marked decrease in the prices of GIS hardware, GIS is an operational
and affordable information system for planning. The main constraints
in the use of GIS in urban planning today are not technical issues, but
the availability of data, organizational change, and staffing.

In terms of Urban Energy Modeling, GIS-based and data-driven
models can be effectively used to assess and optimize energy-related
processes within urban areas (Manfren, Nastasi, Groppi, & Garcia,
2020). These tools enable the integration of geospatial data such as
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Table 1
GIS-based and data-driven building energy modeling studies compared in this paper in terms of urban scale, approaches and application.
Authors Urban scale Approaches Application

Koch (2010) Districts Engineering-based, Statistical Energy efficient planning
Hipp et al. (2012) District Machine learning Social district boundaries
Nouvel et al. (2015) Building, District, City Engineering-based, Statistical Heat consumption models
Quan, Li, Augenbroe,
Brown, and Yang (2015)

Building, City Engineering-based Energy modeling

Li, Quan, and Yang (2016) District, City Engineering-based Energy performance simulation
Ma and Cheng (2016) City Machine learning Energy use intensity
Yamamura, Fan, and
Suzuki (2017)

City Engineering-based Energy performance

Chen, Hong, and Piette
(2017)

Building, City Engineering-based Retrofit analysis

Moghadam, Toniolo,
Mutani, and Lombardi
(2018)

Building, City Statistical Built environment energy use

Groppi, de Santoli, Cumo,
and Garcia (2018)

Building, City Statistical Energy consumption and solar potential

Nutkiewicz, Yang, and Jain
(2018)

Building, District Machine learning Urban energy simulation

Zheng and Weng (2019) Counties Engineering-based Energy demand
Ahn and Sohn (2019) District, City Statistical Energy use
Ali et al. (2020) Building, City Machine learning, Statistical Planning and decision making
El Kontar, Polly, Charan,
Fleming, Moore, Long, and
Goldwasser (2020)

Building, District Statistical Software development

Wurm et al. (2021) Building, City Machine learning Heat demand modeling
Garbasevschi et al. (2021) Building, City Machine learning Building stock generation
building locations, land use, topography, and climate information,
which are crucial for accurately modeling energy consumption and
distribution patterns. Table 1 shows a comparison of some GIS-based
and data-driven studies reviewed for this paper. Engineering-based
methods use synthetic experimental data, implement a limited number
of typologies, and there are numerous assumptions embedded in energy
simulations which directly affect the accuracy of results. Data-driven
approaches, on the other hand, do not require detailed knowledge
about the building as these approaches estimate building energy per-
formance based on historical data either using statistical or machine
learning models (Abbasabadi & Ashayeri, 2019), nevertheless there
is no standardization of such methods, and hence limit their use in
policy-making. While statistical models use sample data about buildings
to build a mathematical relationship between the building’s energy
consumption and characteristics, machine learning models implement
algorithms that learn from data to predict building energy performance
with minimal assumptions.

This study implements both data-driven (ML) and a GIS-based ap-
proach at a large scale, few studies do that as seen in Table 1. The
methodology is explained in detail in the following sections. However,
three important sources of the literature were key for this research. The
first study is that from Wurm et al. (2021), in this study the authors
developed a workflow for deep learning-based building stock modeling
using aerial images at city scale for heat-demand modeling, this study
showed the advantages of using data-driven approach, specifically the
use of Convolutional Neural Network (CNN), in large urban scale in
Germany, however the authors encounter one key problem with the
particular data needed, the information about the German building
stock used was found in a grid format, which meant that the outcome
of the heat models was also in grid format. The second study was that
from Garbasevschi et al. (2021), here, the authors developed a ML
model, specifically a Random Forest (RF) model, to take the same data
found in grid format a disaggregate the information for the individual
buildings depending on the geometrical features of the buildings, they
focused on the parameter of the building age or construction period
and showed how the prediction of building individual age influenced
the heat demand, for the heat demand they used a simple calculation
due to the fact that the focus was on the ML disaggregate model.

The third study, out of which this paper takes great inspiration, is
3

that from Dettmar et al. (2020). In their work, the authors define three
big groups for types of urban units: Settlement areas, open spaces, and
single elements. Due to a historically similar urban development, set-
tlement areas in Germany show homogeneous and recurring structural
and technical characteristics. The authors classify these areas into 14
definable building structures from 1 to 10, with subdivisions such as
1.a, 1.b etc. Open spaces are the second main group, a total of 15 dif-
ferent open spaces identified by the authors, and these are undeveloped
areas in the urban space such as: public green spaces, traffic areas,
water bodies and rural areas. Single elements such as special buildings
in the urban context can also play a significant role from an energy
perspective, the authors identified 23 different single elements such as
educational buildings, hospitals, cinemas, sport fields etc. These are,
mostly, non-residential buildings used for mono-functional purposes.
The authors define morphological characteristics for all of the urban
units of type settlement areas and this characteristics present a great
value for the present study. The settlement areas and open spaces
were denominated by Dettmar et al. (2020) as ESTs and the individual
elements as EE. More about these urban units and their characteristics
is explained in Section 3.

2.3. Significance in today’s German context

The German government has ambitious targets for reducing emis-
sions related to final energy consumption in the building sector. They
aim to cut emissions by 50% by 2030 and make the building stock
nearly climate-neutral by 2045 (BMWK, 2019b). This involves the goal
of feeding 30% of heat networks from renewables or waste heat by
2030 and increasing it to 80% by 2040. To achieve this, the government
employs two main instruments: the first instrument is the Building
Energy Act (known as Gebäudeenergiegesetz in German), which in-
cludes the guidelines for energy retrofitting and energy performance
standards for the building stock (BMWK, 2019a, 2020, 2023). The
second instrument is the municipal heat planning introduced in August
2023, requiring municipalities to outline their heating infrastructure
conversion plans for neutrality by 2045 (BMWSB, 2023).

Municipal heat plans are to be developed on a mandatory basis
and comprise four phases. The inventory analysis phase assesses the
current state of buildings, energy infrastructure, and consumption.
The potential analysis phase explores technical-economic climate pro-

tection possibilities like district heating and heat pumps. The 2040
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target scenario phase establishes conditions for a climate-neutral build-
ing stock by 2040, and the heat transition strategy phase focuses on
concrete measures. Developing these plans is time-consuming, demand-
ing qualified personnel and incurring higher costs. Many cities and
municipalities are still in the early stages and overwhelmed by the
task (Städtetag, 2023).

To effectively address energy consumption in the German building
sector and expedite community heating plans, realistic models that
consider urban areas and energy consumption are crucial. This paper
introduces a GIS and data-driven methodology that speeds up the initial
phase of German municipal heat planning by using available data to
divide the urban space into smaller urban units.

3. Urban energy units

As stated in the previous sections, although there is no universally
accepted definition of the term ‘‘district’’, smart urban planning needs
to integrate new ideas and concepts for districts analysis in order to
develop sustainable energy strategies and minimize CO2 emissions in
urban areas.

This study takes a step back from the conventional approach of
energetically defining the future state of a district. Instead, our focus
shifts to the geographical delineation of pre-existing regions within a
city. These regions share common building and architectural parame-
ters, enabling the assignment of typical energy consumption values. Our
approach transitions from an individual building-oriented viewpoint
to an encompassing district perspective. These geographically defined
regions, characterized by their shared parameters, serve as standardized
units. They can be flexibly assembled to create energy districts, forming
what we call Urban Energy Units (UEUs).

As stated in the literature review, the definition of urban units
presented by Dettmar et al. (2020) serve as the base for our data-
driven classification model and definition of the UEUs. Dettmar et al.
(2020) identified 14 different settlement areas, 15 open spaces and 23
single elements. The authors focused on understanding the structural
and morphological characteristics of each one of the urban units, by
calculating the statistical parameters of the building stock. The values
of these parameters were the result of on site studies and statistical
analysis of the german building stock. However, the study stops there
and in order to classify a new region, the urban-planer needs to
manually draw the boundaries and look at aerial imagery to decide the
urban unit class.

This paper, on the other hand, focuses on the identification of such
urban units by using data-driven approaches and establishing a clear
methodology that can be applied to any given region in an automa-
tized manner. However, because of the complexity of the subject, the
problem of data availability and the purpose of applying this method-
ology in different German cities, the 25 different types of urban units
identified by Dettmar et al. (2020) needed to be simplified, and the
corresponding parameters and values that characterize them, needed
to be re-adjusted. This is due to the fact that for a first approach it was
better to have a simpler version of the classes (for example avoiding the
subdivisions like 1.a and 1.b) and/or avoiding classification of urban
units that with information from other sources such as land use or
official databases could be better classified, for example open spaces
are easy to identify as the main information is usually found in OSM
land use database and for single elements the building function of the
3D GML building models.

Table 2 provides a description of each UEU along with the simpli-
fications made in comparison to Dettmar et al. (2020). In cases where
more than one EST was presented, we calculated the statistical mean of
the different parameters. This table also presents the typical structural
concept of these urban spaces as blueprints for each UEU. Crucially, it
includes values for the total heat and electricity demand. These values
are categorized into four scenarios: No refurbishment, total refurbish-
4

ment, partial refurbishment, and passive housing for the entire building
stock presented in the corresponding UEU. Table 2 specifically displays
the energy demand values for the worst-case scenario, which assumes
no refurbishment of the building stock for the German census year
class 1949−1978. It is important to acknowledge that the energy values
presented in Table 2 and Appendix B Table B.2 have been statistically
adjusted to match the building age classes found in the German census.
However, the validation of these values goes beyond the scope of this
paper. Future research conducted at our institute will concentrate on
refining the accuracy of UEU energy demand calculations, focusing on
higher temporal and spatial resolutions via the development of load
profiles.

Table 3 shows the parameter values for the classification of the
UEUs based on the values calculated by Dettmar et al. (2020). In their
work, they define 47 parameters, from which in this work just 23 were
selected (use distribution and construction type have different classes),
the decision was based in data availability, parameters such as number
of people living in the building, proportion of windows and type of
materials, are difficult to obtained, and that is why the number of
parameters was reduced. More detailed information about the UEU-
types, parameters and energy demand values is found in Tables A.1,
A.2 and A.3 of Appendix A, and Tables B.1 and B.2 of Appendix B.

In urban planning, the study area’s boundaries can change due to
property rights or development plans, potentially excluding important
energy elements or urban spaces. To account for this, flexible study
area boundaries are essential for incorporating existing energy options
and enhancing the overall energy balance. The method shown here
is based on the premise that the urban space can be subdivided into
morphological units called UEUs. By identifying types and abstracting
the urban structure, the urban fabric can be reduced to the parameters
that are essential for energy balance. Based on UEUs, the energy related
properties of an area are calculated in a simplified form and because of
the clear demarcation among each other, the UEUs can be combined in
a modular way. This approach makes an appropriate approximation of
the building stock, making the urban planning adaptable to the changes
of the energy demand and supply. Fig. 1 illustrates how any city area
can be divided into urban units and then be classified into the 16 UEUs.

4. Methodology

In this study, we applied the general methodology outlined in Fig. 2.
This involved selecting a study area, gathering pertinent data, creating
databases for the building stock, defining urban units spatially, cate-
gorizing them into UEUs, and assembling these UEUs to form energy
districts. Subsequent subsections provide a comprehensive breakdown
of each step in the methodology and detail the processing, integration,
and analysis of various datasets.

4.1. Study area

The first step of the general methodology is the selection of the
study area. This can be any given area within Germany. The following
study is focused on the city of Oldenburg in the state of Lower Saxony,
Germany (see Fig. 3). This location was selected because required
datasets were already available for this city and others were provided
by the project partner in Oldenburg. Next subsections introduce the
collected datasets.

4.2. Data collection

The second step of the general methodology is the respective data
collection of the study area. Three main data sources are needed:
Building 3D Models, Census data, and GIS data.
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Table 2
Short description of UEU-types, subdivided into settlement areas with different predominant use and the main differences with the urban units
(ESTs) defined by Dettmar et al. (2020). Heat and electricity demand values under the scenario of no refurbishment for the building stock
and for the census year class 1949–1978. Values given in MWh∕ha × a.

UEU Description Difference from Dettmar
et al. (2020)

Heat
demand

Electricity
demand

Settlement areas with predominant residential use

UEU-1 Small-scale detached housing EST-1, 1.a and 1.b 433 78
UEU-2 Terraced house-like development EST-2 1040 116
UEU-3 Low to medium-height row development EST-3 1420 268
UEU-4 Large-scale residential development EST-4, 4.a and 4.b 1281 395
UEU-5 Perimeter block development EST-5 3243 694

Settlement areas with predominant mix use

UEU-6 Village development EST-6 1738 312
UEU-7 Historic old town EST-7 3126 751
UEU-8 Inner city EST-8, 8.a and 8.b 4924 693

Settlement areas with administrative and commercial use

UEU-9 Business, office and administrative area EST-9 – –
UEU-10 Industrial area EST-10, 10.a and 10.b – –

Open space areas

UEU-11 Public parks EST-11 – –
UEU-12 Cemeteries EST-12 – –
UEU-13 Allotment gardens EST-13 – –
UEU-14 Arable land EST-23 – –
UEU-15 Permanent grassland EST-24 – –
UEU-16 Forest EST-25 – –

Typical concept of the structure of each urban space

UEU-1 UEU-2 UEU-3 UEU-4 UEU-5 UEU-6

UEU-7 UEU-8 UEU-9 UEU-10 UEU-11 UEU-12

UEU-13 UEU-14 UEU-15 UEU-16

1EST 14–22 were not included in the analysis as they represented water bodies and street infrastructure. Single elements (EE) were also not
included as the individual classification of single buildings is done with other data sources.
2The images of the typical concept of the structure of each urban space are an adaptation from the images found in Dettmar et al. (2020)
3The UEU-types 9 and 10 variate a lot due to the fact that they are the administrative, commercial and industrial areas and the heat demand
is very heterogeneous. UEU-types 11–16 are open spaces and the heating demand is effectively almost zero in relationship with the settlement
areas.
Fig. 1. Graphical representation of urban units. A: Satellite image of a part of the city of Oldenburg. B: Basic representation of urban units in a GIS-space. C: Classification of
the urban units into the different UEU-types.
5
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Table 3
Parameter values of the corresponding building stock found within each UEU-type and input for the UEU classification model.a,b

Parameter Description Unit

Floor area ratio Ratio between the total footprint area of the buildings within the section and the total area of the section –
Storeys area ratio Ratio between the total storey area of the buildings within the section and the total area of the section –
Num. buildings ratio Number of buildings within the section divided by the area of the section 1/ha
Avg. num. of storeys Average number of storeys of all the buildings within the section –
Avg. footprint area Average buildings footprint area within the section m2

Residential area Residential area divided by the total area of the section in ha m2/ha
Industrial area Industrial area divided by the total area of the section in ha m2/ha
Brutto living space Brutto living space divided by the total area of the section in ha m2/ha
Brutto footprint area Brutto footprint area divided by the total area of the section in ha m2/ha
A/V-ratio The average quotient of the exterior surface areas (A) and the heated volume of the buildings (V) within the section m2/m3

Avg. envelope surface Average enveloping surface of the buildings within the section divided by the area of the section in ha m2/ha
Avg. façade Average of the proportion of total façade of the buildings within the section divided by the are of the section in ha m2/ha
Use distribution Ratio of the following usages of the buildings within the section: Industrial, Trade, Services, Residential, Other –
Construction type Ratio of the following construction types of the buildings within the section: SFH, MFH, Office, Special, Hall, Other –
Free space Free space of the section, it can be calculated as 1− total building footprint area –

a This is a scaled down version of the data input as for each parameter the information of minimum, maximum and quartiles is available.
b In the case of open spaces labeled UEU 11–16, we determined their classification based on official data and OSM. Since these areas have minimal or no human settlement
infrastructure, all the parameters are effectively zero.
Fig. 2. General methodology for the classification of Urban Energy Units and construction of energy districts. 1: Selection of study area. 2: Data collection. 3: Generation of a
building stock database. 4: Generation of an Urban Units database and calculation of UEU-parameters. 5: DT model for UEU classification. 6: Construction of energy districts
through a combination parameter. The respective numbers represent each one of the following subsections of the methodology.
Fig. 3. Study area: Graphical representation of the GIS data extracted by FlexiGIS and
showcased for the city of Oldenburg, Germany.
6

4.2.1. Building 3D models
A building information model is a digital representation of a built

facility. It includes the geometry of building components at various
Levels of Detail (LoD) (Borrmann, König, Koch, & Beetz, 2015). LoD
defines different object complexities (see Fig. 4). LoD0 indicates foot-
prints, LoD1 involves extruded footprints (blocks), LoD2 encompasses
volumes with simplified roof shapes, LoD3 provides volumetric models
with more architectural details (e.g., windows, roof overhangs, façade
details), and LoD4 extends LoD3 by adding indoor features like rooms
and furniture (Biljecki, Ledoux, & Stoter, 2016).

The source data for Oldenburg’s building models is accessible on
Lower Saxony’s data portal (LGLN, 2021). These models are in CityGML-
LoD2 format, containing information about building geometry, in-
cluding geographical coordinates, footprint, perimeter, area, ground
surfaces, height, walls, roof height, and standardized roof shapes.
Oldenburg has a total of 56,749 buildings, with approximately 80%
(42,875) for residential use. The remaining 20% consists of industrial,
commercial, agricultural, and educational buildings. However, please
note that the database may have incomplete entries and classification
errors.
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Fig. 4. The five different LoDs for building models in CityGML 2.0 (Biljecki et al.,
2016). Licensed under CC BY-NC-ND 4.0.

4.2.2. Census data
Apart from 3D building models, another data source for Germany’s

building stock is the 2011 census, a national population and housing
statistical report (Census, 2011). Due to data protection regulations,
individual data points are not publicly available. Instead, the published
data is aggregated in the INSPIRE-compliant 100 m grid format INSPIRE
(2017), with the highest spatial resolution being 100 m (BKG, 2019).
The aggregated data includes various building characteristics, with the
ones used in this study being: Building Age: It is categorized into
ten age classes, representing unequal intervals of building construction
years. Building Form: It is classified into four categories, distinguishing
between free-standing, semi-detached, row houses, or other structures.
Building Ownership: The information is provided in eight different
classes. Building Use: It distinguishes between buildings exclusively
for residential purposes and those used for both residential and non-
residential purposes. Building Size: The census categorizes it into
ten classes, ranging from single-family houses to structures with over
13 apartment units. Heating System: It classifies buildings based on
their heating methods, including district heating, floor heating, block
heating, central heating, stoves, or no heating system. For more detailed
information, you can refer to the Census (2011) database. Fig. 5 depicts
a graphical representation of the 100 m × 100 m INSPIRE grid format
and the building footprints. The figure shows the difference of data
structure between the census and the building models.

4.2.3. GIS data
Most of the GIS data used in this study was obtained through

the HCMGIS-plugin in QGIS, which allows direct data retrieval from
OpenStreetMap (OSM) (Geofabrik GmbH Karlsruhe, 2020; HCMGIS,
2018). Another method for accessing urban infrastructure datasets is
by using the FlexiGIS plugin for QGIS, developed by co-author Al-
hamwi (Alhamwi, Medjroubi, Vogt, & Agert, 2017). This plugin filters,
clusters, and characterizes data on buildings, land use, and highways
from OSM. GIS data was specifically collected for the city of Oldenburg,
as indicated in Fig. 3. The primary GIS datasets utilized in this paper en-
compass street infrastructure, land use, and administrative boundaries.
The street infrastructure data adopts a vector-multiline format, with
streets categorized based on their significance within the road network.
Land use data is presented in polygon-format, with each polygon tagged
according to the land’s designated use. An important dataset of this
study is the location and capacities of distribution transformers. For this
dataset, we relied on data provided by the local network operator, EWE
NETZ, in Oldenburg, this is the only data-set which is not of open-access
but as later explained in the methodology section, this is a dataset
which can vary depending on the project. Due to copyright and data
privacy regulations, this specific data cannot be shared or published.

4.3. Buildings stock database through ML integration models

The third step of the general methodology is generating a com-
plete database of the building information within the study area by
integrating the main datasets. First, the Building 3D GML models with
7

the census data. As previously discussed, the 3D GML models and the
census database have inherently distinct data structures; therefore, a
critical data cleaning and processing step to create a unified database
is needed. The 3D GML models convey the spatial characteristics of
each building using a specific coordinate system, and other building
attributes, like function and roof shape. In contrast, the census data
is organized in a multi-tabular structure. Each row corresponds to a
specific 100 m × 100 m grid cell in the INSPIRE-compliant grid format,
and each column represents an attribute for that cell.

The challenge is to merge these distinct structures into a single,
coherent, and comprehensible format. This involves effectively associ-
ating each census attribute with every individual 3D building model. In
the census dataset, each parameter is presented as an aggregated mean
value for a 100 m × 100 m grid cell, as shown in Fig. 5. Many buildings
can naturally fall within the same grid cell or overlap multiple grid cells
simultaneously. This situation presents a classic data disaggregation
problem, where statistical data is deconstructed into various individual
variables based on specific characteristics. In the census data each
100 m × 100 m grid cell is assigned a specific label, along with
a measure of accuracy. The accuracy is defined as the relationship
between the total number of buildings in a cell and the number of
buildings that possess a particular attribute within that cell. Leveraging
these two data characteristics (label and accuracy), we developed a
Random Forest (RF) model to allocate the attributes of building age
and construction type to each of the 3D building models. Notably, the
attributes ‘‘building use’’ and ‘‘building form’’ are already present in
the CityGML files. However, certain attributes, such as ‘‘total number
of buildings’’, ‘‘number of apartments", and ‘‘property’’, were not taken
into account because they are not relevant to the investigation.

RF is a supervised learning algorithm known for its robustness to
noise, computational efficiency, built-in importance estimation, and
its capability to handle both categorical and continuous data. It is
particularly effective for tasks involving high data dimensionality and
multicollinearity of features. Moreover, RF is commonly used in classi-
fying remote sensing and geographic data. To construct the RF models,
we selected classification features based on previous research, partic-
ularly focusing on building age and construction type prediction, and
incorporated the census accuracy for each grid cell. These features in-
clude geometric attributes such as building height, roof angle, number
of storeys, volume, building footprint characteristics, and correspond-
ing grid cell accuracy (ranging from 0% for no buildings to 100% for all
buildings with the same attribute). Qualitative attributes like building
use, roof type, and building function were integrated into the model
during the learning process.

The learning process of the RF models consisted of two main com-
ponents. First, city-specific learning features were used. Second, a
separate dataset from another city was employed as an independent
sample where the classification features of building age and construc-
tion type were already known. We used the city of Wuppertal, one of
the few German cities with available open-source data on building ages.

In this model, classification attributes encompass both the building’s
geometric and descriptive attributes, as well as information about the
census grid cell from the INSPIRE-compliant grid format where each
building is situated. The learning dataset was trained using build-
ings located in census grid cells with only one attribute value. A
dataset structure similar to the one used by Garbasevschi et al. (2021)
in Wuppertal was employed. To address potential issues like over-
classification, we used a sub-set of 70% of the Oldenburg building
stock database for training and tested it on the remaining 30% (test
dataset). We also performed cross-validation with data from Wuppertal.
Over-classification occurs when the training data is dominated by a
specific class (for building age, the class 1949–1978 is prevalent due
to post-war construction, and for construction type is the single family
housing). To counteract this bias, we employed random oversampling,
ensuring an equal representation of all classes. For hyper-parameter
optimization, we utilized Grid Search Cross-Validation with the ‘Grid-

SearchCV’ function in Python. This technique is particularly valuable

https://www.ewe-netz.de/ueber-uns/service/downloads
https://www.ewe-netz.de/ueber-uns/service/downloads
https://www.ewe-netz.de/ueber-uns/service/downloads
https://www.ewe-netz.de/ueber-uns/service/downloads
https://www.ewe-netz.de/ueber-uns/service/downloads
https://www.ewe-netz.de/ueber-uns/service/downloads
https://www.ewe-netz.de/ueber-uns/service/downloads
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Fig. 5. GIS and census data visual representation. A: Part of the city of Oldenburg, showing the building footprints from the 3D GML models with Google Satellite Basemap.
B: Census data aggregated in INSPIRE 100 m grid for the parameter of building age and subdivided into the ten different classes. C: Census data aggregated in INSPIRE 100 m
grid for the parameter of construction type. Colored grid cells represent a space of 100 m × 100 m in the same area of the city of Oldenburg. Building footprints are also shown.
in machine learning, especially for tuning hyper-parameters in Ran-
dom Forest (RF) models. RF hyper-parameters, such as the number
of trees or the maximum tree depth, can significantly impact model
performance. The ‘GridSearchCV’ function automates this process by
systematically exploring numerous RF configurations, allowing us to
select the best-performing model. Last but not least, a Mean Decrease
in Impurity (MDI) information gain was employed in order to quantify
the importance of each feature in the decision-making of the model.

The performance of a classification algorithm is generally evalu-
ated by its accuracy or success rate, defined as the ratio of correctly
labeled observations to the size of input data. For problems of multi-
class classification, the overall accuracy can be misleading when the
representation of classes in the sample is unequal. This is the case
with most of the building datasets under analysis. After generating a
prediction for the building age and building construction type for all
the buildings within the study area, we were able to construct a general
database, with 39 different attributes as a result of the integration of
the GIS, census and 3D CityGML datasets.

4.4. Urban units database

The fourth step in the general methodology is the generation of a
database with the information of the spatially defined sections within
the study area and the relevant attributes for the classification of UEU
found in Table 3. This database is generated by the pre-processing
and integration of the OSM land use and street infrastructure datasets,
creating the GIS-space of the spatially defined urban units, and for each
urban unit the calculation of the UEU-parameters is done by analyzing
the statistical distribution of the individual buildings found within each
urban unit.

4.4.1. Spatial boundaries through interpolation of OSM data
The street-infrastructure dataset, includes streets categorized by

their importance within the road network. Streets labeled as "service"
and ‘‘tertiary’’ were removed, leaving only the more significant ones.
To enhance data processing, the street data was transformed into a
multi-polygon format by applying a 1.5 m buffer and then dissolving
the geometries. This process, shown in Fig. 1B, aided in sectioning the
study area. After dividing the study area into these sections, the land
use attributes from the OSM database were assigned to each section.
The land use data is organized as vector multipolygons, with each
polygon indicating land usage. These polygons were cropped to fit
the sections mentioned earlier, and their associated attributes were
transferred accordingly.
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4.4.2. Calculation of UEU parameters
The calculation of the 23 UEU-parameters are needed for the future

classification of the UEUs (see Tables 2 and 3). These parameters
(detailed in explained in Appendix B) are calculated by processing of
the buildings database into the spatially defined sections or urban units.
The integration was done through statistical methods for each one of
the parameters, either by averaging, adding or listing the respective
values of all buildings within the urban units. Due to the fact that
the building database refers to the individual buildings within the
study area, and the urban units database refers to the subdivision of
the study area into different urban units, the integration of these two
databases is done through: first, aggregation of the parameters of the
individual houses through statistical methods and second, allocation of
such parameters into each one of the urban units of the study area. In
order to have a common unit of reference, all parameters are given per
hectare of urban unit.

The parameters refer to geometrical and structural characteristics
of the buildings within each urban unit. Firstly, the geometrical char-
acteristics such as mean height, total ground area, average number of
storeys etc, are calculated through analysis of the 3D GML models of
the buildings, and secondly, the structural characteristics such as form
of the building, age of the building, type of land use, etc., are the result
of ML models that classify the corresponding individual buildings and
geospatial analysis of the different data sources. At the end of this
process, we obtain a complete database of the study area subdivided
into urban units and attributes explaining the statistical information of
all individual buildings within each one of these urban units.

4.5. Decision tree model for UEU classification

At this moment we have calculated the 23 UEU-parameters for every
urban unit of the city of Oldenburg. However, everyone of these urban
units needs to be classified into one of the corresponding UEU-types
(see Table 2). Here comes the fifth step of the general methodology,
namely, the UEU classification.

We employed a Decision Tree (DT) model to classify the urban units
into UEU types. A DT serves as a decision-support tool, representing
decisions and their potential outcomes in a tree-like structure. It is
essentially a collection of conditional statements. Each case, charac-
terized by specific attributes, falls into one of several classes, with
attributes that can be either continuous or discrete (Quinlan, 1987).
The main advantages of choosing a DT for the classification model
include its transparency. Decision trees are easy to understand as
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Fig. 6. Graphical representation of the Decision Tree (DT) model.

their structure resembles a flowchart with a series of if–else condi-
tions, making them intuitive for interpretation. Furthermore, they can
effectively capture nonlinear relationships between features and the
target variable, making them suitable for modeling complex decision
boundaries. Lastly, decision trees can rank the importance of features
by assessing their contribution to the model’s decision-making process,
helping identify the most relevant features for predictions. However, it
is essential to note that DTs can be sensitive to data variations, leading
to variations in the optimal decision tree structure and outputs with
even minor changes in the data.

The DT classification process relied on a set of if–else conditions
that compared specific parameters of each urban unit with established
thresholds for each UEU type. These thresholds, encompassing min-
imum, average, and maximum values, were derived from literature
(see values in Appendix B Table B.1). The DT’s operation unfolded as
follows: The algorithm began by selecting an urban unit from the urban
unit database created in prior steps. For each parameter, it checked
if the value fell within the specified range (defined by the minimum
and maximum literature values). If the value was within the range,
the parameter was labeled as ‘true’, and the algorithm calculated the
deviation from the mean literature value. If the value was outside the
range, the parameter was labeled as ‘false.’ This process was repeated
for all parameters, with a count of ‘true’ and ‘false’ for each UEU class.
If the majority of parameters were labeled ‘true’ for a particular class,
it became a possible classification for the selected UEU. The algorithm
iterated through all potential classes and selected the one with the
minimum classification error. You can see a visual representation of
this DT model in Fig. 6. The algorithm was implemented in Python.

4.6. Construction of energy districts

The last step in our general methodology involves the creation
of energy districts through the aggregation of various UEUs within a
9

city. Let us break down this process. Initially, UEUs are defined based
on literature and open-source data, then classified according to key
parameters describing settlement patterns and building characteristics.
These UEUs are subsequently stored in a database and serve as the
fundamental analysis units for future urban energy planning. They not
only provide a standard way to delineate energy areas in a city but
also possess the unique feature of being combined in a modular manner
to assess larger settlements. In essence, they act as building blocks for
energy districts.

However, a critical question arises: How do we aggregate UEUs
to create these energy districts? The answer is a flexible compromise
between standardization and adaptability to special conditions. Each
UEU serves as a standard building block for energy analysis, and urban
planners or energy analysts are given the freedom to select parameters
for combining UEUs into energy districts. Constructing energy districts
relies on the specific requirements of energy planners, projects, admin-
istrative bodies, architects, or any stakeholders focused on energetically
assessing large areas with a standardized approach. An energy district
can be formed by summing the UEUs. This is achieved by selecting a
UEU combination parameter, which can be customized based on the
project or study area’s specific needs. If no combination parameter is
chosen, each UEU functions as an independent energy district. This
level of flexibility demonstrates the adaptability of our methodology
while still maintaining a standardized core.

In our study, we exemplify how to create energy districts in Olden-
burg. We have selected a parameter that we believe effectively bridges
the current energy system with future energy planning: the ‘network
transformers’. This choice is driven by two primary reasons. Firstly,
network transformers serve as a crucial link between electricity and
heating demand. In future scenarios, renewable sources will generate
electricity for the heating demand, and these transformers will play a
key role in distributing this energy. Secondly, network transformers are
spatial points, allowing for geographically referenced point-vector data,
which aligns with our methodology’s adaptability. By utilizing this
parameter, we illustrate how to construct energy districts in the context
of our study in Oldenburg, highlighting the valuable interconnection
between the existing system and future energy planning. It is important
to note that these network transformers’ data, provided by the local
network operator in Oldenburg, is restricted due to copyright and data
privacy concerns and cannot be publicly disclosed. To combine UEUs
using network transformers and create geographically defined energy
districts, we follow these steps:

1. Voronoi Diagram Generation: We start by generating a Voronoi
diagram, a geometric division of the plane based on the network
transformers. Each transformer becomes the center of a Voronoi
polygon.

2. Overlap with Classified UEUs: Next, we overlap these Voronoi
grids with the pre-classified UEUs. Both the Voronoi polygons
and UEUs are in a multi-polygon vector format, which allows
for this overlap.

3. UEU Allocation: We allocate each UEU to the Voronoi polygon
that covers more than 50% of its area. Meaning that each
Voronoi cell has a set of corresponding UEUs. Each UEU belongs
to one Voronoi grid, even though geographically it may intersect
with multiple Voronoi grids.

4. Energy District Aggregation: We aggregate all UEUs that belong
to each network transformer, creating a single energy district for
each transformer.

Combining UEUs based on their proximity to a network transform is
just one of many ways to aggregate them. Urban planners have the
flexibility to choose from various methods. The visual explanation can
be found in Fig. 7.
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Fig. 7. Expanded methodology. A: Satellite image of a part of the city of Oldenburg.
B: Basic representation of urban units in a GIS-space. C: Classification of the urban
units into the different UEU-types. D: Geographical location of network transformers
in the GIS-space. E: Illustration of the Voronoi polygons according to the location of
the network transformers. F: Construction of two energy districts by adding different
UEUs together that fall into the same Voronoi polygon.

5. Results

The following paragraphs show the results of this study, this section
follows the general methodology shown in Fig. 2 plus the construction
of energy districts in Oldenburg. It shows first the results for the
construction of the building stock database, the construction of the
Urban Units database, how the two databases are combined with an
integration model and the calculation of the UEU attributes, in order
to use the decision tree classifier and obtain the final UEUs. Last, the
combination of the UEUs to construct the energy districts are shown.

5.1. Building stock database through ML integration models

The Building stock database constructed in this study was the result
of the integration of the building 3D models, CityGML attributes, the
geolocation and the census data for the study area. This database has a
tabular structure with a total of 56,749 records (individual buildings)
and 37 attributes describing the geometry, building type and census
data of each building. According to the Administration of Oldenburg,
there are 45,438 residential buildings and about 2956 non-residential
buildings, the difference with the number of records is allocated to the
individual small constructions like garden houses or garages.
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Attributes such as building ID, number of neighbors, grid ID allo-
cation, among others, were allocated due to geolocalization process.
This geolocalization process made possible the integration of the 3D
building models with the CityGML attributes and GIS data by using
the same Coordinate Reference System ETRS89 Lambert Azimuthal Equal
Area. Other attributes such as centroids, areas, perimeters, height-area
ratio etc., were calculated with mathematical processes using python
and the GeoPandas library. Last but not least, the allocation of census
data for each one of the buildings was the result of a combination of a
geolocalization process with a ML data-disaggregation model.

The learning phase had an accuracy of 91% for the classification
of the building age just in the city of Wuppertal after optimization
of the model with the ‘GridSearchCV’ function of scikit-learn. When
we added the building information of Oldenburg and expanded the
learning dataset including now the buildings in Oldenburg that fell
in those grid cells with just one classification of the building age,
the total accuracy with optimization dropped to 84%. This values is
still higher than the accuracy of other models, and includes more
information and learning parameters from the census data, making it
a high-accuracy classification of the building age of buildings when no
more information is available. When comparing the general aggregated
classification of all the respective classes we see a 84% accuracy in the
classification of the buildings in Oldenburg, meaning that overall in the
city 84% of the buildings were classified correctly and each individual
building has a probability of being classified between 84%−100%
depending whether or not it falls into one of those unique grid cells.
Fig. 8 shows the main results of the classification model. In the first
place, it shows the importance of the first 13 features ranked from
top to bottom, this ranking is derived from the Mean Decrease in
Impurity (MDI) information gain. Here we see that the most important
feature for classification of building age are the centroid or location
of the corresponding building, height, and how many buildings are
in the same grid cell. Fig. 8 also shows the confusion matrix for the
final classification of the building age for the buildings in Oldenburg,
showing higher number of predicted values on the matrix’s diagonal
and an overall accuracy of 84%. And finally we can show an overall
aggregated histogram per building age class in Oldenburg, comparing
the predicted values with those of the general census data. Fig. 9 shows
an illustration on a GIS-space of how the buildings look before and after
their classification with the RF model.

For the construction type the model classified all buildings in
Oldenburg into one of three major classes (SFH, MFH and others).
According to aggregated 2011 census data, 81% of residential buildings
in Oldenburg are SFH, approximately 16% are MFH, and the remaining
2% are other residential buildings such as garages and small gardens.
The presented model classifies with 82% accuracy the buildings be-
tween SFH and MFH. However, it misclassifies 8 times more buildings
into the class of ‘others’. This is because the 3D CityGML models
Fig. 8. Results of the RF classification model for Oldenburg. Left: Feature importance of the model. Middle: Confusion matrix of each possible class for the building age showing
true and predicted labels. Right: Histograms of the aggregated census data compared to the building age prediction showing a 84% accuracy.
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includes all of the buildings within the study area (including the non-
residential like administrative buildings and others) and the census
database focuses only in residential buildings. Even after filtering the
buildings, there is still significant misclassification, likely because the
3D building models only contain geometry information and may lack
other relevant parameters beyond just the building’s geometry.

Fig. 9. Graphical representation of the building age and construction type before
and after the classification of the buildings in Oldenburg on a GIS-space with the
INSPIRE-compliant 100 m grid format.

5.2. Urban units database

The first result was the construction of the urban units database.
This database contains the information of the spatially defined sec-
tions within the study area and the relevant attributes for the future
classification into specific UEUs found in Table 3. This database was
generated by the pre-processing and integration of the OSM land use
and street infrastructure data sets described in Section 4.4.1 and the
calculation of the UEU attributes from Dettmar et al. (2020) described
in Section 4.4.2. A total of 8249 urban units were spatially defined,
these urban units build a database with all 23 parameters needed for
the UEU classification process. The database has a size of 8249 × 23
and for this reason is not presented here. However the results can be
appreciated in Fig. 10.

5.3. Decision tree model for UEU classification

Each of the previously spatially defined urban units was classified
into one of the 16 UEUs mentioned in Tables 2, A.1, A.2 and A.3 by
applying the decision tree classifier described in Section 4.5. Fig. 10
shows the classification of the spatially defined UEUs for the city of
Oldenburg. Every single UEU contains all of the parameters of Table 3
and is also linked to the building stock database, accessing to the cor-
responding information of the 3D building models located within that
UEU. The classification shows clearly how the old town and industrial
areas around it are well classified, also the residential buildings mostly
corresponding to UEU-types 1 and 2. On the upper right corner we
can see the whole study area of Oldenburg and surroundings exported
by FlexiGIS and classified by this model, the residential parts of the
city are clearly distinguishable as well as the arable lands and forest
surrounding the city. This shows that classification model works on
large scales.

As explained before, the classification was done via a DT classifier.
The DT classifier is based on predetermined reference values taken out
of the literature (Dettmar et al., 2020); therefore, there is no training
process and the validation of the is done by comparing the classified
UEU with the corresponding satellite image, and seeing whether or not
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the building’s infrastructure corresponds to the information of the UEU.
This process was done with a random number of UEUs and the model
classified all of them well. As an example of this process, in Fig. 10 we
can see how the city center of Oldenburg is clearly delimited by the
UEUs 7−8, which are the historic old town and inner city respectively,
and the UEUs 1−5 are predominantly regions of residential use, which
is also seen in the corresponding satellite image.

It is important to emphasize that if this methodology is to be applied
in other projects, we will be able to construct a larger database with
more information and therefore; the model could be adapted to increase
the classification accuracy. As of now, this is the first ever classification
of UEU done with computational methods and therefore the inconsis-
tencies with reality and classification errors are to be expected. These
inconsistencies are seen in the unclassified UEUs of the model, and are
mainly cause because of: Low quality information about the building
stock of that region and/or high mixture of commercial, residential and
industrial use.

The classification was done for the city of Oldenburg and the
administrative areas shown in Fig. 3. Table 4 shows the percentages of
classification for each UEU-type for the 8249 urban units, here we can
see that the largest amount of area for the study area is of class UEU-
14 (Arable land) and UEU-16 (Forest) with a total of 55%. It makes
sense due to the fact that the study area incorporates a large amount
of rural area around the main urban city. The urban city of Oldenburg
is characterized mainly by UEU-1 (small-scale, detached residential
development of low to medium storey height) and UEU-10 (Industrial
area) which accurately corresponds to the data provided by the city
administration and the census data with approximately 65% of the
buildings being single family houses. A total of 11% of the area was not
classified by the model, this could be because of the following reasons.
First, the corresponding spatially defined urban spaces either had a high
mix of industrial and residential buildings, making it difficult for the
model to differentiate between residential and non-residential. Second,
the information of the 3D building models was not complete or non
existent, meaning that although there are existing buildings within
that area, the model was not able to allocate the building properties
given by the 3D model (such as height, area, etc.) and therefore could
not classified the corresponding urban unit. The last reason for the
unclassified area, is because part of the open urban space does not fall
into one of the established categories, examples are open parking lots or
construction areas, future versions of the model could implement such
open spaces, but for simplification of this study just the open spaces
mentioned in Table 4 were classified.

5.4. Construction of energy districts

Construction of energy districts is made through the combination of
different UEUs within a city. The UEU combination is made with help of
the selection of the UEU combination parameter as shown in the main
methodology. The UEU combination parameter chosen for this study
was the geolocation of network distribution transformers of the city of
Oldenburg, because they act as a link between the current electricity
capacity and the heating demand in urban energy planing.

In order to combine UEUs through network transformers and geo-
graphically defined energy districts, we follow the procedure explained
in Section 4.6 through the calculation of Voronoi polygons. A total
of 853 network transformers are located in the study area, and their
location was provided by the local network operator EWE NETZ in
Oldenburg. These 853 network transformers have different capacities
of 200, 250, 400, 630 and 800 kVA, which in first instance and for the
purpose of generating the Voronoi polygons is irrelevant; however, in
the future, such information can be integrated in the decision making
process in order to better construct energy districts according to the
specific needs.
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Fig. 10. Part of the city of Oldenburg divided into the specific UEU-types 1−16. Coordinates of the specific area are given in the satellite image. City center, surroundings of
residential and commercial areas, as well as unclassified UEUs are defined by the UEU-types.

Fig. 11. Energy districts of Oldenburg. A: General view of Oldenburg divided into energy districts. B: Part of the city of Oldenburg divided into energy districts, the energy
districts were constructed around the network transformers shown as red points. (C, D): Energy analysis of a single energy district constructed with four UEUs is shown alongside
the satellite image and the summary of the total energy demand in the table.
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Table 4
Percentage distribution for each UEU-type. A total of 8249 UEUs were classified in an area of 258.10 km2.
Urban energy unit Description Percentage %

Settlement areas with predominant residential use

UEU-1 Small-scale, detached residential development 14.7
UEU-2 Terraced house-like development 2.2
UEU-3 Row development of low to medium storey height 3.9
UEU-4 Large-scale residential development 0.2
UEU-5 Perimeter block development 0.1

Settlement areas with predominant mix use

UEU-6 Village development 0.0
UEU-7 Historic old town 0.1
UEU-8 Inner city 0.5

Settlement areas with administrative and commercial use

UEU-9 Business, office and administrative area 0.1
UEU-10 Industrial area 7.4

Open space areas

UEU-11 Public parks 2.6
UEU-12 Cemeteries 0.3
UEU-13 Allotment gardens 0.4
UEU-14 Arable land 36.9
UEU-15 Permanent grassland 1.5
UEU-16 Forest 18.0
Unclassified – 11.1
A total of 798 different energy districts where constructed in this
tudy, and these energy districts, process the information of: the build-
ng stock, the respective UEU, energy demand, and network trans-
ormer capacity. Fig. 11 shows the constructed energy districts for the
ame area of Fig. 10. It also shows the analysis of one specific energy
istrict chosen at random and a summary of the characteristics of each
EU of this district. More about the energy demand shown in this table

s explained in the following paragraphs.
As previously mentioned, the configuration of energy districts relies

n a combination parameter. For this study, the chosen parameter is the
eolocation of network transformers. However, it is important to note
hat this parameter can be adjusted to align with the specific require-
ents of energy planners. While this adaptability is advantageous, it

lso comes with limitations. On the positive side, it provides flexibility
n parameter selection. Nevertheless, it is essential to acknowledge that
ata related to the location of network transformers may not always be
eadily available, presenting a potential limitation.

.5. Heat demand at district level

As we can see, the selected energy district is built around a single
etwork transformer, a total of four units were grouped in order to
uilt this energy district. One unit was classified as UEU-7 and the
emaining three of type 8. Information about the mean building age,
istribution of building type (SFH, MFH or other), number of buildings
n the unit, total area of the unit, as well as the classification accuracy
re found on the corresponding table. The most important information
s the prediction of the total heat and electricity demand for the four
EU and the overall energy district, the values for the energy demand
re taken from Dettmar et al. (2020), adapted according to the german
ear construction classes of the census and the information is found
n Appendix B Table B.2. There are four possible cases, according to
he level of refurbishment. The worst case is the assumption that the
ntire building stock is not refurbished and the best case scenario is the
ssumption that the entire building stock is entirely refurbished. The
nformation can also be presented as a range for the heating demand,
ue to the fact that the information about the level of refurbishment of
he individual buildings is not known, so by assuming a total refurbish-
ent and no refurbishment of the buildings, we obtain the minimum

nd maximum heat demand values per hectare per year. This is one
f the main limitations of the UEUs, because there is no information
13

bout the state of refurbishment of the buildings, we have to assume
for conservative reasons, the worst case scenario. However, there are
some studies that statistically classify the heat demand according to the
refurbishment status of different European countries (Loga, Diefenbach,
Stein, & Born, 2012). The selected energy district has a total final
predicted heating demand between 2800–10,300 MWh∕a (depending
on the best or worst case refurbishment of the buildings) and electricity
demand of 1238 MWh∕a.

The outcome of this methodology is the mapping of UEUs with
their respective heat demands. In Fig. 12, the energy demands of
Oldenburg’s UEUs are showcased. The total energy demand, denoted in
MWh∕(ha × a), is specified for each UEU. It is important to note that
these energy values are based on the best-worst-case scenario (with or
without refurbishment of the building stock) as explained in Section 3.
Furthermore, in Fig. 11, you can see the energy analysis of the same
district. For a broader perspective, Fig. C.1 in Appendix C illustrates
the energy mapping for the entire city of Oldenburg, demonstrating
the rapid spatial analysis of energy demand across large areas and
emphasizing the advantages of employing UEUs as the primary unit
of spatial measurement.

6. Practical application of the UEUs

The practical application of the UEUs can be summarized by the
fact that because many municipalities in Germany are still in the early
stages of the municipality heating plan (as stated in the introduction
and literature review) and because there is lack of personal and stan-
dardized processes, this methodology and its results can accelerate the
first phase of the heating plan which is to understand the building stock
and energy demand in neighborhoods.

Small municipalities, because of their lack of qualified personnel
to generate such energy analysis, subcontract specialized engineering
offices, from which there are not so many in the country in order to
meet the demand, and are therefore currently under high pressure, a
classical high demand/low offer scenario. It is clear that this method-
ology presents a complex mixture of ML models, GIS-based approaches
and new definitions that may not be used directly by engineering
offices and energy planners. However; the concept is already defined
and the process is established, further development of a user friendly
interface or of a general UEU-based energy map of the country could
accelerate the acceptance and use of the UEUs, such as the energy
map of Oldenburg presented in Appendix C. The main result being,

to locate the areas with high and low heat demand to see where new
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Fig. 12. Showcase of Energy District Analysis of Oldenburg. The respective UEUs are displayed according to their heat energy demand in MWh pro constructed area in hectares
(ha) pro year given a worst case of refurbishment state of the building stock. A: General heat map view of Oldenburg. B: Part of the city of Oldenburg divided into UEUs, with
the location of the network transformers shown as red points. (C, D): Energy analysis of a single energy district constructed with four UEUs. Alongside the satellite image is a
table with a summary of the UEU characteristics of the district with the total energy demand, here the values for heat demand of best and worst case are displayed.
technologies should be built (for example heat pumps, short or long
distance heat networks) and integrated into the mix. The concept has
been applied in two pilot-projects with two different engineering offices
in Germany. The results have been of interest to the engineering offices
as they are able to present a documented version of the heating plan
in form of maps to the municipalities using, among other information,
the UEUs; however, further development of is still needed

7. Conclusion and outlook

In this paper, we introduced an innovative methodology for sub-
dividing urban areas into sixteen different morphological units known
as Urban Energy Units (UEUs). These UEUs are characterized by spe-
cific building attributes, settlement patterns, and energy demands,
which are detailed in various tables throughout this study. Our pri-
mary data sources included 3D-CityGML building models, census data,
OpenStreetMap, and official administrative GIS data. We applied this
methodology in Oldenburg, a mid-sized German city. Our analysis
revealed that crucial information for effective energy analysis in Ger-
many is often missing, specifically parameters related to building age,
construction type, and refurbishment status. To address this gap, we
developed a Random Forest model to estimate the first two parameters
with an accuracy of 84%. For the third parameter, we established
a worst-best-case scenario. Oldenburg was divided into 8249 distinct
UEUs, each classified into one of sixteen different classes using a
Decision Tree model. This covered a total area of 258.10 km2, from
which 89% was successfully classified.

The UEUs were subsequently combined to form 798 distinct energy
districts centered around network transformers. This was due to the
fact that the energy transformers act as a link between the current
electricity capacity and the future heating demand in urban energy
planing. The energy analysis of an individual district was showcased
14
with results presented using maps that highlight the effectiveness of
GIS in energy planning. The respective values for heat and electricity
demand were adapted statistically to align with the building age classes
of the German census, drawing from literature sources. However, it is
important to note that the validation of such values is out of the scope
of this paper

Future research will have a dual focus. Firstly, we aim to typify
the heat and electricity demand profiles of UEUs by validating them
against aggregated building energy demand models at higher spatial
and temporal resolutions. We also plan to expand the number of
UEU classes by applying our methodology to other urban areas like
municipalities and smaller cities. On the practical side, we intend to
ground the UEUs’ application in forthcoming pilot projects in collabora-
tion with engineering firms responsible for creating municipal heating
plans. Additionally, our focus will be on developing user-friendly soft-
ware that facilitates the seamless integration of our findings. This
approach acknowledges that city planners typically do not employ
complex machine learning models in their decision-making processes.
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