Müller, Konstantin and Leppich, Robert and Geiß, Christian and Borst, Vanessa and Aravena Pelizari, Patrick and Kounev, Samuel and Taubenböck, Hannes (2023) Deep Neural Network Regression for Normalized Digital Surface Model Generation with Sentinel-2 Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (16), pp. 8508-8519. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3297710. ISSN 1939-1404.
PDF
- Published version
4MB |
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10189905
Abstract
In recent history, normalized digital surface models (nDSMs) have been constantly gaining importance as a means to solve large-scale geographic problems. High-resolution surface models are precious, as they can provide detailed information for a specific area. However, measurements with a high resolution are time consuming and costly. Only a few approaches exist to create high-resolution nDSMs for extensive areas. This article explores approaches to extract high-resolution nDSMs from low-resolution Sentinel-2 data, allowing us to derive large-scale models. We thereby utilize the advantages of Sentinel 2 being open access, having global coverage, and providing steady updates through a high repetition rate. Several deep learning models are trained to overcome the gap in producing high-resolution surface maps from low-resolution input data. With U-Net as a base architecture, we extend the capabilities of our model by integrating tailored multiscale encoders with differently sized kernels in the convolution as well as conformed self-attention inside the skip connection gates. Using pixelwise regression, our U-Net base models can achieve a mean height error of approximately 2 m. Moreover, through our enhancements to the model architecture, we reduce the model error by more than 7%.
Item URL in elib: | https://elib.dlr.de/199795/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | Deep Neural Network Regression for Normalized Digital Surface Model Generation with Sentinel-2 Imagery | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 21 July 2023 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3297710 | ||||||||||||||||||||||||||||||||
Page Range: | pp. 8508-8519 | ||||||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Deep learning, multiscale encoder, sentinel, surface model | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||||||
Deposited By: | Aravena Pelizari, Patrick | ||||||||||||||||||||||||||||||||
Deposited On: | 27 Nov 2023 11:37 | ||||||||||||||||||||||||||||||||
Last Modified: | 27 Nov 2023 11:37 |
Repository Staff Only: item control page