Spanier, Robin (2022) Pollination AI: deep learning approach to identify pollinators and their taxa using the yolo architecture. Master's, RWTH Aachen.
PDF
315MB |
Abstract
Bestäuber spielen eine Schlüsselrolle bei der Pflanzenvermehrung, die für die Sicherung unserer Lebensmittelversorgung und die Erhaltung der biologischen Vielfalt von wilden Pflanzen unerlässlich ist. Jüngste Berichte über den Rückgang der Bestäuber und ihrer Vielfalt haben zu der dringenden Forderung nach mehr Studien über Bestäuber und ihre Leistungen geführt. Dies erfordert bessere Daten über die Interaktionen zwischen Pflanzen und Bestäubern, die in einem breiten räumlichen und zeitlichen Rahmen erhoben werden. Derzeit werden Daten von Bestäubern aus Feldbeobachtungen gewonnen, die mit den reproduktiven Teilen von Blüten in Kontakt kommen und anschließend unter dem Mikroskop identifiziert. Diese Methoden sind arbeits- und zeitintensiv und erfordern spezielles Fachwissen im Bereich der Insektentaxonomie. Dies verhindert, dass Daten in den großen Maßstäben erhoben werden können, die für die Beantwortung dringender Umweltfragen erforderlich sind. Es besteht daher die Notwendigkeit, die Art und Weise der Datenerfassung im Bereich der Bestäubungsökologie zu verändern, indem neue Techniken entwickelt werden, die Insektenbestäuber automatisch anhand von Bildern erkennen und identifizieren. Ziel dieser Studie ist es, modernste DeepLearning-Tools für die automatische Überwachung der Interaktionen zwischen Pflanzen und Bestäubern anhand von Feldaufnahmen in Europa einzusetzen. Es besteht ein Bedarf an der Entwicklung von Instrumenten, die mehrere Insektenordnungen, mit hoher taxonomischer Auflösung und mit einer Genauigkeit identifizieren können, die der von menschlichen Entomologen entspricht. Die Entwicklung eines automatisierten Verfahrens unter Verwendung des Objekterkennungsalgorithmus YOLOv5 wird in dieser Arbeit vorgestellt. Die Auswahl der Bilder für den Trainingsdatensatz erfolgte sorgfältig und präzise, da die Bilder zum Trainieren des Modells einen entscheidenden Faktor für die erfolgreiche Identifizierung von Insekten sind. Über 17.000 Bilder von acht Gruppen von Insekten, die als Besucher von Blumen betrachtet werden können, wurden über die Citizen-ScienceDatenbanken iNaturalist und observation.org abgerufen. Nach dem Training des Modells zeigten ein Vergleich und eine Bewertung der experimentellen Ergebnisse, dass das Modell die acht Insektengruppen mit einer durchschnittlichen Genauigkeit von 91% erfolgreich identifizieren kann. Damit werden die ersten Schritte getan hin zu einer Deep-Learning-Methode, die den mühsamen Prozess der manuellen Klassifizierung von Bestäubern vereinfacht und einen Beitrag zur Schaffung eines europaweiten Überwachungssystems für Bestäuber leistet. i
Item URL in elib: | https://elib.dlr.de/199696/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Master's) | ||||||||
Title: | Pollination AI: deep learning approach to identify pollinators and their taxa using the yolo architecture | ||||||||
Authors: |
| ||||||||
Date: | 28 June 2022 | ||||||||
Refereed publication: | No | ||||||||
Open Access: | Yes | ||||||||
Gold Open Access: | No | ||||||||
In SCOPUS: | No | ||||||||
In ISI Web of Science: | No | ||||||||
Number of Pages: | 127 | ||||||||
Status: | Published | ||||||||
Keywords: | AI, Pollination, Object Detection | ||||||||
Institution: | RWTH Aachen | ||||||||
Department: | Geographisches Institut | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||
Deposited By: | Stark, Thomas | ||||||||
Deposited On: | 27 Nov 2023 10:25 | ||||||||
Last Modified: | 27 Nov 2023 10:25 |
Repository Staff Only: item control page