Brauer, Christoph und Breustedt, Niklas und de Wolff, Timo und Lorenz, Dirk (2024) Learning Variational Models with Unrolling and Bilevel Optimization. Analysis and Applications, 22 (3). World Scientific. doi: 10.1142/S0219530524400037. ISSN 0219-5305.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.worldscientific.com/doi/10.1142/S0219530524400037
Kurzfassung
In this paper we consider the problem of learning variational models in the context of supervised learning via risk minimization. Our goal is to provide a deeper understanding of the two approaches of learning of variational models via bilevel optimization and via algorithm unrolling. The former considers the variational model as a lower level optimization problem below the risk minimization problem, while the latter replaces the lower level optimization problem by an algorithm that solves said problem approximately. Both approaches are used in practice, but unrolling is much simpler from a computational point of view. To analyze and compare the two approaches, we consider a simple toy model, and compute all risks and the respective estimators explicitly. We show that unrolling can be better than the bilevel optimization approach, but also that the performance of unrolling can depend significantly on further parameters, sometimes in unexpected ways: While the stepsize of the unrolled algorithm matters a lot (and learning the stepsize gives a significant improvement), the number of unrolled iterations plays a minor role.
elib-URL des Eintrags: | https://elib.dlr.de/199389/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Learning Variational Models with Unrolling and Bilevel Optimization | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 1 März 2024 | ||||||||||||||||||||
Erschienen in: | Analysis and Applications | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 22 | ||||||||||||||||||||
DOI: | 10.1142/S0219530524400037 | ||||||||||||||||||||
Verlag: | World Scientific | ||||||||||||||||||||
Name der Reihe: | Interaction between Harmonic Analysis and Data Science (Special Issue) | ||||||||||||||||||||
ISSN: | 0219-5305 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | algorithm unrolling; bilevel optimization; supervised learning; risk minimization | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Factory of the Future | ||||||||||||||||||||
Standort: | Stade | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemleichtbau > Produktionstechnologien SD | ||||||||||||||||||||
Hinterlegt von: | Brauer, Dr. Christoph | ||||||||||||||||||||
Hinterlegt am: | 21 Nov 2023 21:15 | ||||||||||||||||||||
Letzte Änderung: | 11 Nov 2024 14:07 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags