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In this paper, we consider the problem of learning variational models in the context of
supervised learning via risk minimization. Our goal is to provide a deeper understand-
ing of the two approaches of learning of variational models via bilevel optimization and
via algorithm unrolling. The former considers the variational model as a lower level
optimization problem below the risk minimization problem, while the latter replaces
the lower level optimization problem by an algorithm that solves said problem approx-
imately. Both approaches are used in practice, but unrolling is much simpler from a
computational point of view. To analyze and compare the two approaches, we consider
a simple toy model, and compute all risks and the respective estimators explicitly. We
show that unrolling can be better than the bilevel optimization approach, but also that
the performance of unrolling can depend significantly on further parameters, sometimes
in unexpected ways: While the stepsize of the unrolled algorithm matters a lot (and
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learning the stepsize gives a significant improvement), the number of unrolled iterations
plays a minor role.

Keywords: Algorithm unrolling; bilevel optimization; supervised learning; risk minimiza-
tion.

Mathematics Subject Classification 2020: 68T07, 68T05

1. Introduction

In image and signal processing and beyond, quantities of interest are often recon-
structed from potentially noisy observations by means of suitably parameterized
energy minimization problems [13] B7, 40, 52| 60]. An unknown ground truth y is
then approximately recovered in terms of an optimization problem

Yy € argmin f(z, z, w), (1.1)
z

where the energy f to be minimized depends on an observation & and parameters
w. Purely knowledge-driven approaches, for example based on sparsity assump-
tions [24 [35], rely on the assumption that a suitable energy function and associated
parameters are a priori known or can be hand-crafted from domain knowledge.
Data-aided approaches [5] [7, [54] are commonly used in the opposite case where
choosing an appropriate energy is not obvious and thus, the parameters w or
parts of them shall be learned from data. In this work, we analyze the method
of unrolling [I8 [50] for the learning of variational models [58] [63]. Here, the mini-
mization problem () has the specific form

y € argminS(z,x) + R(z, w) (1.2)

with a similarity measure S and a regularizer R. Moreover, we are given empirical
data (x;,y;) for i = 1,...,m, where each tuple includes an observation x; as well
as the associated ground truth y;. Therefore, one aims to learn optimal parameters
w by minimizing the empirical risk: For a loss function ¢, this amounts to solving
the bilevel problem

1 m
min — Z (Y, y;) st g; € argminS(z, x;) + R(z, w). (1.3)
womi3 =
By learning parts of variational objectives, patterns in the data can be captured
that elude human perception and therefore cannot find their way into hand designed
and purely knowledge-driven objectives in classical approaches.

1.1. Algorithm unrolling

Bilevel problems [8] 14} 2T, 25| 59] like (I3]) are notoriously hard to solve. To apply
gradient descent, the solution operator of the lower-level problem (2] needs to
be differentiated with respect to the parameters w. Given that the objective of the
lower-level problem is differentiable and attains a unique minimum, gradients can be
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computed by implicit differentiation [29]. However, non-smooth objectives and such
with potentially multi-valued solution operators are commonly used in image and
signal-processing. The technique of unrolling (see [50] for a recent survey and [I§]
for a broader context) circumvents the need to differentiate the solution operator.
Here, one considers an iterative algorithm which is able to solve the lower level
problem and replaces the optimal solution g; of the lower level problem by the
Nth iterate of this algorithm. If we denote this iterate by Ay (x;, w), learning by
unrolling the lower level problem amounts to solving the surrogate problem

1 m
in — ; i) 1.
Hgnm;€<AN<mlaw)ayl) ( 4)
The same algorithmic scheme Ay (-, w*) with learned parameters w* is subse-
quently utilized to make predictions on unseen data.

1.1.1. Comparison with neural networks

Generally speaking, both (L3)) and (L4]) are supervised learning [32] problems since
the actual goal is to learn a mapping from the space of observations to the space
of ground truths based on a collection of input-output pairs. Artificial neural net-
works [30} [44] constitute a different and recently very popular class of parameterized
models that are frequently used in the context of supervised learning problems.
However, apart from all advantages that come along with neural networks and
deep learning, some shortcomings still exist which may be more or less obstructive
depending on the application at hand. First, neural network models and predictions
are usually not interpretable without additional effort [57]. In contrast, energy min-
imization problems are naturally interpretable as the objective that is minimized is
often modeled from statistical principles in terms of priors and discrepancies. Sec-
ond, the ability of neural networks to generalize to unseen data relies heavily on the
availability of sufficient training data. Despite the potential use of regularization,
training neural networks on small datasets is prone to overfitting [26]. Conversely,
domain knowledge and priors can be incorporated in energy minimization problems
by means of tailored objective function terms. As a consequence, energy minimiza-
tion problems can generalize well also in small data regimes, while usually featuring
considerably fewer parameters than artificial neural networks. Recent approaches
combine energy minimization and deep learning by using modern neural network
design patterns to learn regularizers for variational objectives [39].

1.1.2. Comparison with bilevel learning

The unrolling of iterative algorithms can be motivated by the difficulty to solve
some bilevel problems directly with gradient descent. Beyond that and in contrast
to bilevel learning, unrolling offers a holistic view on training and inference as the
same algorithmic scheme is utilized at both stages. Compared to classical model
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based and also bilevel approaches where iterative algorithms often require large
numbers of iterations to succeed, unrolling can provide better convergence rates as
model parameters are trained with regard to algorithmic efficiency.

1.1.3. Application to variational models

A wide range of unrolling approaches with different applicational backgrounds have
been derived based on variational models. In addition to the area of application that
often motivates the concrete terms R and S used in ([Z), approaches can be dis-
tinguished in terms of further characteristics, for example, the unrolled algorithmic
procedure A, associated algorithmic parameters like stepsizes and extrapolation
factors, the number of unrolled iterations N, and finally, those parts of the objec-
tive which are parameterized and shall be learned. In the seminal work [31], the
authors propose the learned iterative soft thresholding algorithm (LISTA) which is
an unrolling of the ISTA algorithm from [J] and also Coordinate Descent [45] to
learn dictionaries for sparse coding [53]. In [16], the Chambolle-Pock algorithm [I7]
is unrolled to learn an analysis operator and appropriate primal-dual stepsizes for
speech dequantization, and it is shown that the resulting learned variational model
outperforms the purely knowledge-driven variant introduced in [I5]. A different
approach is pursued in [3] where the same algorithm is unrolled with trainable
proximal operators in the context of tomographic reconstruction. In [4], a similar
approach is investigated that uses the Wasserstein loss [23] instead of the common
lo-1loss. The authors of [I0] develop a network architecture for image restoration
that is obtained by unrolling a proximal interior point algorithm [12] and learning
associated barrier parameter, stepsize and penalization weight. The authors of [2]
investigate an architecture where only the stepsizes of ISTA are learned and demon-
strate state-of-the-art results given sparse solutions. Beyond the above-mentioned,
there are numerous other recent works that consider or use the unrolling of varia-
tional models. As a complete list goes beyond the scope of this paper, we refer to

the survey papers [18| [50].

1.1.4. Theoretical background

If we focus exclusively on the attainable reconstruction error, fundamental ques-
tions arise that concern the expressivity of bilevel learning and unrolling as well as
the suitability of both paradigms in view of specific applications and data distribu-
tions. In the case of unrolling, additional degrees of freedom, especially the utilized
algorithm, algorithmic parameters, and the number of unrolled iterations, need to
be taken into account.

It has been observed previously in [I6] that results can be rather insensitive with
respect to the number of unrolled iterations. The paper [61] investigates learned
step-sizes in the case of gradient descent. It is shown that learned step-sizes can
come close to the theoretically optimal step-sizes. The paper [19] analyzes LISTA
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and provides insight about how the weights in different layers should be coupled
to guarantee convergence of the method. In a follow up [46] the authors show that
one can obtain a similar performance with analytic weights in contrast to learned
weights for LISTA. The paper [47] analyzes an unrolled proximal method and shows
that the proposed method can indeed be trained to obtain critical points of the true
loss. The paper [49] applies unrolling to the problem of dictionary learning and par-
ticularly concludes that too many unrolled iterations lead to numerical instabilities
while a few iterations lead to high performance. In particular, the authors observed
that the calculation of gradients can become unstable and that a truncated back-
propagation improves this behavior.

1.2. Contribution

We investigate a toy model for learning variational models by bilevel optimization
and unrolling of gradient descent. To do so, we first investigate the expressivity of
the bilevel and the unrolling approach. This allows us to calculate best risks and the
corresponding estimators for each approach exactly and thus a comparison of the
two approaches.

Even though the toy model is indeed quite simple, we can observe some (at least
to us) surprising phenomena:

e In theory, the number of unrolled iterations plays a minor role if the stepsize
is learned as well. However, the theoretical best risks differ substantially if an
even or an odd number of iterations is unrolled. We are not aware that this
phenomenon has been observed in practice and we suspect that steep minima in
the odd case are responsible for this.

e Optimal bilevel estimators may not exist in situations where optimal unrolling
estimators exist.

e The stepsize of the unrolled algorithm does influence the respective risk consider-
ably. As a consequence, learning the stepsize as well is expected to be beneficial.

We will discuss these findings, their relations to other experiments and their rele-
vance for practical problems in Sec.

1.3. Organization

The remainder of this paper is structured as follows. In Sec. 2] we introduce the
framework for our theoretical investigations including a specific energy function and
two data models. For the considered energy function we derive explicit formulas for
the exact minimizer and for the Nth iterate of unrolled gradient descent. Based on
that, we further derive specific risk functions to be minimized depending on both
the utilized data model and whether exact bilevel optimization or unrolling shall
be applied. In Sec. Bl we address the expressivity of exact bilevel optimization and
unrolling, i.e. we derive sets of admissible estimators for both cases. Subsequently,
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we deduce best estimators and associated minimal risks in Sec. @l A visualization
and a further discussion of the previous results is given in Secs.[Bland[6], respectively.
In Sec. [, we conclude the paper.

1.4. Notation

For a vector a € R" we denote by diag(a) the n x n diagonal matrix with a on
the diagonal. For symmetric matrices S,T we write T' = S if T' — S is positive
semi-definite and T' > S if T' — S is positive definite. By ||x||, for some x €
R"™ we denote the 2-norm, and for a matrix T € R™*™ we denote by ||T'||, the
Frobenius norm which is induced by the standard matrix inner product, namely
(T, S) = trace(T"S). Moreover, we denote by Eig(T,\) = {y € R*|Ty = \y}
the eigenspace of T' for the eigenvalue \.

2. Model

We introduce our toy model and use the standard setup for supervised learning.
We assume that paired data (x,y) consisting of objects & and labels y is given
following some distribution (which we describe below in Sec. 2I). The goal is to
predict y from «, i.e. we want to find a map f which maps an object x to its
prediction g := f(x) (see [22, Sec. 1.2]). Our learning model consists of the lower-
level problem, the upper level problem and the model for the data, see (L3)). In
this paper, we do not treat the problem of empirical risk minimization, but the
minimization of the true risk, i.e. we do not minimize

1 m
— > Y,y
m; (%i,y:)
but the true risk
E (y,y),

(z,y)

where the expectation is taken with respect to the distribution of the data (x,y).

2.1. The data model

Our data model assumes that the given data (x,y) consists of noisy data @ which
has been contaminated with additive noise, i.e. we assume that

r=yY-+e

with noise € € R" and clean data y € R”. For simplicity we always assume that
the components ¢; of noise are i.i.d. €; ~ N, where N is the normal distribution
with mean zero and variance 2.

For the data y we assume two different but similar cases:

(1) Random constant vectors: We assume that y = A1, where A € R is dis-
tributed according to a distribution D with expectation E(\) = p and variance
Var(\) = 62 for some y,6 € R.
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(2) Random i.i.d. vectors: We assume that all components y;, j = 1,...,n
are independent and identically distributed according to a distribution D with
expectation E(y;) = p and variance Var(y;) = 62 for some p, 0 € R.

In the first case, we have one constant signal where the value of the signal is random,
and in the second case we have a slightly noisy clear signal.
Our full data models have the following set of parameters:

n: ambient dimension.
o2: variance of the noise.
6?: variance of the signal.

w: expected value of the signal.

2.2. Lower-level problem

Our lower level problem is a very simple variational denoising model: For data
x € R™ we produce denoised data by solving

) 1 2 1 2
3 = awgunin 11z — a3 + 2| Rz, (21)
z

where the parameters of the model are the coefficients of the matrix R € R¥*". The
first term %[z — iL‘Hg is (up to a missing factor of 1/02) the negative log likelihood
of the noise distribution. The second term %HRZH%, however, is not the negative
log-likelihood of the data distribution in both cases we consider. We use it here for
convenience.
A calculation of the optimality condition of (ZI]) shows that the unique mini-
mizer is given by
9=I+R"R) 'z (2.2)
As a minimization algorithm for this lower-level problem, we consider simple gradi-

ent descent with constant stepsize w > 0. If we initialize the gradient descent with
2% = 0 and define M := I — w(I + RTR), then we get as Nth iterate

N-1 N-1
2N =MV +w Z Mg =uw Z(I—W(I—I—RTR))jiL‘
=0 =0

and further, using the geometric sum ij;ol Al = (I - A)~Y(I — A"), we obtain
2N=T+R'R'I-(I—-wlI+R"R)")x. (2.3)

2.3. Upper level problem
The objective in the upper level problem is simply the true risk for the squared loss
. 1. 2
Uy,y) = 5119 — yll2.

In principle, the loss should be motivated by the data model and other losses besides
the squared loss are used (e.g., the cross entropy for classification problems) but
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we concentrate on the squared loss for simplicity. Note that the loss £ is in general
not related to the similarity measure § in the lower level problem.
Together with our data model we get the objective

1 2
E —|y-— .
E Sl -l
y~D
To calculate this risk, we note that both the solution operator of the lower level
problem from (22]) and the map from (23] (which gives the Nth iterate of gradient
descent for the lower level problem) are linear operators. More precisely, we have

T=(I+R"R) "R
for the solution operator and
T=I+R "R '(I-I—-wI+R"R)"N)ecR""

for unrolling. In both cases, the estimation is y = Tx = T'(y+e¢) for some T' € R**"
and hence, we aim to calculate

1 2
E(T) = E 5Ty +e) -yl
y~D
Lemma 2.1 (True Risk for Additive, Independent Noise). If y and € are
independent and the noise has zero mean, it holds that

1 1
E(T) =E3|(T - Dyl + E 5| Tel;.

Proof. A calculation gives

1 2
ESITy +e) —yl;
y~D

1 ) 1
= B 51T~ nwii + (- nwTe) + gl
S |

_1 2 1 2
= E |=|[(T-1 E (T-1 E T E —||T
By |31 - Dwig] + (B (7~ Dy, B Te) + B JITel:

1
= K —
y~D _2

2 1 2
I~ DlE] + B, 5ITel
since Econ e = 0. O

We see that the objective decouples into two terms, the noise term E. %HTeHg
and the data term Ey, £[|(T — Iy|3.

For the noise the following lemma shows that the expectation of HTeHg can be
expressed in terms of the Frobenius norm ||TH§, of T.
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Lemma 2.2. If the components of € are i.i.d. with mean zero and variance o? it

holds that

2 2 2
E | Tellz = o7 Tk

Proof. We use the cyclic property and linearity of the trace and the expectation
to calculate

E ITel;= E _[¢'TTe] = E_[trace(e” T"Te)]

env. Env.

E [trace(T 'Tee')] = trace (TTT ]EN(ssT))
e~

e,

= trace(T ' To?) = o2 trace(T ' T) = o>||T||3.. =

For the data term we get different results for random constant vectors and i.i.d.
vectors.

Lemma 2.3. For the data term we obtain the following results:

(1) Random constant vectors: For y = A1 with EX = u and Var()\) = 62 it
holds that

E||(T ~ Dyll3 = (42 + 0%)(T ~ D15,
(2) Random i.i.d. vectors: Fory with y; i.i.d. with E(y;) = u and Var(y;) = 62
it holds that
BT — Dyll3 = w2 - D3 + 62T — 1)
Proof. Both parts are straightforward calculations. For the first part, we use
E(A\?) = Var()\) + E()\)? = 62 + u? and obtain
E||(T ~ Dyl = EX(T - DJE = (6% +w2)(T - D1
We show the second part. By independence of y; we have for symmetric M that
IE,yTMy = %Zmijyiyj = Zmij E(yi)E(y;) + Z mi; B(y3)
i.j ] i
= 2 Z mi; + 602 trace(M).
J
Hence, we get for M = (T — I)" (T —I)
El(T - Dyl =p*Y (T - D (T — 1))y + 6 trace((T — I) (T — I))
ij

= p?|(T — D1|f5 + 0*|T — 1I|f3.. O
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Combining the previous lemmata, we obtain the total risks for our two data
models.

Corollary 2.1. (1) Random constant vectors: For y = A1 with EX = p and
Var(\) = 62 it holds that
2

(2) Random i.i.d. vectors: Fory with y; i.i.d. with E(y;) = p and Var(y;) = 6*
it holds that

2
g
Econst.(T) = E(T) = (T = D1f3 + 1T 5

M2 2 62 2 o? 2
Eisa(T) 1= E(T) = (@ - D3 + ST - 1% + T

Proof. For (1) combine Lemmas and 23[(1) and for (2) combine Lemma
with Lemma 2Z3)(2). m|

3. Expressivity

In this section, we analyze the expressivity of bilevel learning and unrolling for the
lower level problem (2]). Since the resulting maps are linear in both cases, we just
alm to characterize the set of linear maps that can be obtained by one of the two
approaches. We describe the set of bilevel estimators for the lower level problem
7)) in Theorem Bl and the set of unrolling estimators for the same lower level
problem in Theorem

3.1. Expressivity of bilevel learning
As we have seen in Sec. 2 in ([Z2]), bilevel estimators are of the form
T=I+R"R)!

with some R € RF¥*™. Hence, the set of n x n matrices which can be expressed in
this way depends on k£ and we denote

Ay = {I+R"R)"'| R c RF>"}.

This set can be characterized with the help of the singular value decomposition
of R.

Theorem 3.1. The set of bilevel estimators for the lower level problem (211) with
matrices R € RFX™ s

A = {T ¢ R"" |dim(Eig(T,1)) >n—k, T' =T, 0 <T < I}.
Proof. Let T = (I + R"TR)™! € Aj. The matrix I + RT R is symmetric and

positive definite and hence, the same holds for T. As RT R is positive semidef-
inite, there exist an orthonormal matrix V' € R"*"™ and a diagonal matrix
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¥ = diag(o1,...,00) € R"*" with 07 > -+ > 0 > 0and o471 = - =0, =0
such that RTR = VEV T, It follows that

T=(I+R'R)™=(I+Vdiag(o,...,0,)V")!

. - ] —1
= (VI +diag(o1,..-,00))VT) 1=leag(1+a)VT'

Therefore, we have T' € {T € R™*" | dim(Eig(T,1)) > n—k, T" =T, 0 < T < I}.
Vice versa, if T' fulfills dim(Eig(T,1)) > n—k T' =T and 0 < T < I,
then we can write T = VOV T with © = diag(#) and 0 < 6; < 1. We define

3 = diag(o1,...,0n,) by setting o; = 9%- — 1 and get that T = (I + VEV )L

Hence, any R = UXV " with some orthonormal U gives T' = (I + R"TR)~! as
desired. ]

3.2. FEzxpressivity of unrolling
In the unrolling case, we have seen in ([Z3)) that the estimators are of the form
U=I+R"R'I-(I-wlI+R"R)"Y)

and hence, the expressivity depends on the depth N that we unroll and also on the
stepsize w of the algorithm. The set of possible estimators is

Bypw:={I+R'R)'(I-(I-wl+RR)")|ReR""}.
An analysis similar to the previous section leads to the following result.

Theorem 3.2. The set of unrolling estimators for the lower level problem (21
unrolled for N steps of gradient descent with stepsize w > 0 and matrices R € RF*™
is as follows:

(1) N even:

BN,k,w = {U e Rm*™

U=UT, dimEig(U,1 - (1 -w)V)) >n—k,
U=<[1-(1-wTI.
(2) N odd: There exists a constant cy ., which fulfills

1 1 1 1 [1+]1log(N)/2

i )< < BT Bl = S

w(2+N+1>—CN"“—“’ 2 TN ,_ log()
N

if (N=Dw+1)(1-w)¥ "t >1,

N else,

cNw=1—(1-w)
such that
Brniw ={U RV |U=U", dim(Big(U,1 — (1 —w)V)) >n —Fk,

CN,wI < U}
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Proof. As in the proof of Theorem B we write RTR = VTXV with ¥ =
diag(o1,...,0p). We denote o = (01,...,0,) and abbreviate diag(o) for vectors
0. Any U € By i, can be written as

U = V7 dig(fww(@)V  with fiu(o) = 10 _l‘i((lf )"

)

where we applied f componentwise to the vector o with entries ordered decreasingly.
More precisely we have (since the rank of R is at most k) o1 > 09 > -+ > op, >
Ok41 =+ =0, =0 . In other words, U is a symmetric matrix which has fy . (0)
as eigenvalue with multiplicity at least n — k and k further eigenvalues that are in
the range of fy . : [0, 00[— R.

Thus, we only need to analyze the range of fy,. If N is even and w > 0 is
arbitrary, the function fu, is strictly decreasing and unbounded from below with
fNw(0) =1— (1 —w)V. Hence, it holds that fx, : [0,00[—] — 0,1 — (1 —w)N] is
onto.

In the case of odd N the situation is more complicated. We still have fn ,(0) =
1—(1-w)¥, but if fn.w(0) <0, then f,, ., : [0,00[— R has a single local minimum
which is positive, but the function is unbounded from above. Hence we have that
there is some positive value ¢y, such that fx . @ [0,00[— [cn.w,00[ is onto. If
fn.,(0) is positive, the function is strictly increasing and its minimum is at f ,(0).
Computing fy ,,(0) shows that this is the case exactly when (N-1lw+1)(1 -
w)N=1 < 1.

Now we derive upper and lower bounds for ¢y, in the case (N — 1w +1)(1 —
w)N=1 > 1. We substitute 7 = 1 — w(1 + o) (remember that o > 0, i.e. 7 <1 —w).

Then we have that fy (o) = w 1ff;v, i.e. we only need to estimate the minimum
of hx(r) = (r¥ —1)/(r — 1) from above and from below.

First, we note that any function value of hy is an upper bound for the minimum,
i.e. we can estimate the minimum from above by evaluating (1 — 7)/(1 — ) at

r* = —1+1og(N)/N, which gives the upper bound
N N
(oY (o)

N B N
log(NV) o log(N)
N N

We further estimate

(1 _ %)N :exp(Nlog (1 - %)) < %

where we used log(1 — ) < —x. Hence, we get the claimed upper bound

1

. Py 11 [ 14l0g(N)/2
N_2710g(N)_2 Ny, log(N)

N N
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Now we show that ay = % + ﬁ is a lower bound for hy. We prove this by
induction. First, we rewrite hy(r) = rN=1 4 ... 4 r 4 1. A lower bound ay is

any value such that hy(r) — an is a non-negative polynomial. For N = 3 we have
hs(r) — az = r? + r + 1 — a3. Recalling the fact that

1
ar’+r+c¢>0&a>0 and ac z 7, ®)

we see that 1 —ag = i, i.e. az = % is the optimal lower bound.
Now assume that hy > an is proven. We have

hnsa(r) =V 4N e 1=y (r) +r+ 1 > anr® + 7+ L.

Using (EI), we see that anr?2 +7r+1 — apn+2 is non-negative if

1
CLN(l - CLN+2) = Zv

_q1_ 1 _1 1 :
hence ay4o2 =1 Toy — 31T w3 28 claimed. O

This theorem has important consequences:

e The expressivity of unrolling changes greatly if the number of unrolled iterations
is even or odd. In the odd case, only positive definite estimators are possible but
their norm may be unbounded, while in the even case, all estimators have a norm
equal to 1 — (1 — w)" but may be singular and/or have negative eigenvalues.

e In the even case, increasing the number of unrolled iterations (with fixed k) does
not increase the expressivity if the stepsize w is adjusted properly, in other words:
Unrolling 2 iterations is as good as unrolling 4 iterations. We will see this more
clearly in Sec.

We note furthermore that the proof of non-negativity of hn(r) — ay shown
above can be interpreted from a more abstract viewpoint: Deciding non-negativity
of polynomials is a classical key problem in real algebraic geometry with strong ties
to polynomial optimization; see e.g., |[I1, 42]. Nonnegativity is frequently shown
by what is called a certificate of non-negativity. One of these certificates is circuit
polynomial introduced in [33], and what is effectively done in the proof above is a
decomposition of hy(r) — ay into a sum of non-negative circuit polynomials; see

also e.g., [34].

4. Best Risks and Estimators

In this section, after calculating the best linear estimators, we aim for the best
unrolling and bilevel estimators for both data models. For this purpose we minimize
the true risks from Corollary 2Tl over linear operators of the corresponding form.
We provide an infimum for the risks of the best bilevel estimator in the case
of random constant vectors, Theorem [A.I], and compute the minimum for this risk
in the case of random i.i.d. vectors, Theorem Also, we compute the minimum
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for the risks of the unrolling estimator in the case of random constant vectors,
Theorem [£3] and in the case of random i.i.d. vectors, Theorem[Z4l In our analysis,
we do consider all parameters varying. However, note that due to the expressivity
results Theorems B and B2 we do not consider the case k > n (i.e. R having more
rows than columns) as this case has exactly the same expressivity as the case k = n.

4.1. Best linear estimators and their risks

For now we focus on general linear operators, i.e. T' € R"*".

4.1.1. Random constant vectors
In the situation of random constant vectors, in which the true risk is given by

gconst. (T) 2

2
g
(T = D13 + 1T

we get the following result.

Lemma 4.1. The best linear estimator is T = %11T and its corre-
n(u?+02)+o
sponding risk is
2 (4 ?)

. « (o}
m111n 5const.(T) = 5const.(T ) = 7m

In particular, the estimate for the denoised data of a given x is

e (@ 1) (0 +6%)
—Trg =W TT )4
Yo TG 02) 1 o2

The proof is given in

Since in this data model the vectors are just constant vectors, one might naively
expect that the optimal linear estimator will just be the estimator 7T2¥¢ = %llT
which averages all entries. The theorem shows that a slightly damped average
(depending on the parameters of data and noise) will lead to a smaller risk and
this shows that learned algorithms (which do not need to know the parameters of
the data distribution) can outperform naive ad hoc estimators.

4.1.2. Random i.i.d. vectors

Recall that Corollary 211 gives the true risk in the situation of random i.i.d. vec-
tors as

2 , 02 P
&iia.(T) = 7||(T - D" + 7HT — Iz + 7|\THF-
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Lemma 4.2. The best linear estimator in the case of i.i.d. vectors, i.e. the mini-

. . 2 2 2 . . L
mizer of Ei.q., s T* = 020 I+ 02‘102 nu2f92+02 117 and its corresponding risk is

+o?
0'2 nu202 n,LLZUQ
in&ida(T)="C&ia(T)=— 1
min 1a.(T) a.(T") 5 |:<nﬂ2+92+0'2)2 < Jr(6?24-02)2)
02 no?p?
02
’ (0% + 02)? (nu2+92 e

4o <(n 1) + (nﬂgej;gj(ﬁ)?))]'

The proof is given in
In this case, the optimal estimator is not a damped weighted average, but a
convex combination of a damped average and the identity.

4.2. Best bilevel estimators and their risks
Now we consider the bilevel approach, i.e. we aim to minimize the risk £(T') over
maps of the form

T=(I+R R

with R € RF*™ We begin with the situation of random constant vectors, but before
we do so, we state a lemma that will help later.

Lemma 4.3. Let a € R", ¢; > 0 for j = 1,...,n and consider matrices V. =
[v1,...,v,]. Then there exists a solution of

n
m‘}n Z|<vj,a>|20j : V orthonormal
j=1

_a_

with v =
J lall

and v; L a for j # j* with j* € argmin; c;.

Proof. Since V is orthonormal, we have Z?:1|<'Uj,a>|2 = |la||*. Hence, we can
reformulate the minimization problem as a linear program by substituting s; =
(v, )| as

minimizes ¢'s
subject to 3 s; = ||a?

j
0<s; <l|alf> forallj=1,...,n

with ¢ = (¢1,...,¢,) and ¢; > 0.
The objective is bounded from below by cj||aH2 (for any j) and this value is
attained for s = HaHzej* which is feasible. Resubstituting, we see that the corre-

sponding v is exactly the one claimed in the lemma. O



Anal. Appl. 2024.22:569-617. Downloaded from www.worldscientific.com

by GERMAN AEROSPACE CENTER (DLR) on 05/02/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

584 C. Brauer et al.

4.2.1. Random constant vectors

In the situation of random constant vectors, we want to minimize Eqonst.(T) over
maps T € Ay, i.e. we want to minimize

2 2 2
ue+0 _ 2,0 12
Sl RTR T - i+ T+ RTR)
Theorem 4.1. It holds that
o2
7(nf k) if k <n,

inf gcons. T) =
TeA, (1) o n(u®+0%)

but the infimum is not attained in both cases. Hence, the best bilevel estimator does
not exist and for the risk of any bilevel estimator T it holds that

0,2

2
o®  n(p®+6%)

2 n(p?+62)+ o
The proof is given in Interpreting the result above, a best bilevel

estimator for random constant vectors does not exist. However, there exist estima-

(n—k) if k <mn,
5c0nst.<T) >
if k=n.

tors which give a risk arbitrarily close to o2(n — k) /2.

4.2.2. Random i.i.d. vectors

In the situation of random i.i.d. vectors, we want to minimize & ; q (T') over maps
T € Ag, i.e. we want to minimize
p? T py—1 2 07 T o1 5 02 o2
N+ RTR D1+ S RTR) 10+ T+ RTR)

In this case, best estimators do exist, but for the sake of readability we just state
the best risks in the next theorem.

Theorem 4.2. [t holds that the attained minimal risk is given by

o2 02 .
min & iq.(T) =

TEA o? 62 nu? + 62
. -1 if k =n.
2 ((” )92+U2+nu2+92+02> Fk=n

We do not prove this theorem here, since we get the result as a byproduct in
the proof of the next proposition.

Proposition 4.1. The optimal risk in Theorem[Z2] for k < n is attained for R =

UAV T with U € R*™ with orthonormal rows (UU " = I,), A = § [Iok 0 0 ] and
n—Fk
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orthonormal V. = [1;1 . 'vn] with vy, ...,vL1. The respective linear estimator is
T 1 T 0° 0°
T"=I+R R) =VXV 3 = dia 1,...,1].
( Jr ) ) 1g<02+0_27 702_"_0_27 ) ) )
The optimal risk in Theorem for k = n is attained for R = UAV' T with
g
—I,1 0
U € R™ ™ with orthonormal rows, A = 0 o o ] and orthonormal V- =
/nMQ + 92
[vl e 'vn] with vy, ..., v, L 1. The respective linear estimator is

T"=(I+R'R'=VEV' ¥ = diag(

The proof is given in
Thus, we have proven Proposition 1] as well as Theorem Note that the
case of i.i.d. vectors reduces to the case of random constant vectors for § — 0 (i.e.

62 62 np? + 62
024+02"" 702402 nu2+02+02)°

the variance of the entries vanishes, rendering the vector constant): The respective
minimal risk from Theorem[Z.2lconverges to the one on Theorem.Iand the optimal
R diverges for 6 — 0.

4.3. Best unrolling estimators and their risks

For the rest of the section, we consider unrolling estimators. In this case, we aim
to find the minimizer of the risk over maps of the form
N—1
T=w) I-wI+R'R)=I+R"R'I-(I-wI+R"R))Y) (4.1)
j=0
with R € Rkx",
Using functional calculus for operators, we get that if RTR = VIV T with
orthormal V' and ¥ = diag(o1,...,0,) (where ox41,...,0, = 0if Ris k xn), then
T from (@) is of the form

T=VfX)V', with f(X):=diag(f(o1),...,f(on)), and

£(s) 1—(1-wl+s)V
s) = .
1+s
For convenience, we define the following abbreviations of terms that appeared
in previous expressions and will appear in the next results as well:
(W* +6*)n ©on+6°

. N . -
pNwi=1=(1=w)T, Cl'_(u2+92)n+02’ 02'_H2n+92+02’

(4.2)

92
C = =
STz g2

Ci,max = max{Ci,cN,w}, s {1, 2, 3}
with ¢y from Theorem [3.21

Ci,min = min{Ci, pN,UJ}a



Anal. Appl. 2024.22:569-617. Downloaded from www.worldscientific.com

by GERMAN AEROSPACE CENTER (DLR) on 05/02/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

586 C. Brauer et al.

4.3.1. Random constant vectors

Theorem 4.3. Let N € N and 0 < w < 2 be fized. For N even and k < n it holds
that

:N2+92 o2 )

min  Eeonst. (T) n(pN.w — 1%+ 7(n — k)pr.

TGBN,)C,W 2

For k = n we have

2 4 p2
. w40
Eeonst. (T') =
rgin | Eeonst.(T) 2

2 o’ 2
n(Cl,min - 1) + 70

1,min"

The minimal risk is attained in both cases. For N odd and k < n it holds for the
minimal risk

2 2 4 g2
min = Eeonst. (T) = U—((k — l)c?\,w +(n— k)p?v ») -+ min {M * n(Cy max — 1)2

TeBN,k,w 2 ’ ?

o2 2 4 g2 o2

+ _012 max> K n<pN7UJ - 1)2 + _C?V w
2 2 ’
For k = n we have
2 2 2 2
. w+0 o o
Terllslzle,lk,w Econst.(T') = 5 ”(Ol,max - 1)2 + 7012,max + 7(” - 1)6?\],&;-

Again, in both cases the minimal risk is attained.

The proof is given in

4.3.2. Random i.i.d. vectors

For the case of random i.i.d. vectors, we have the following result.

Theorem 4.4. Let N € N and 0 < w < 2 be fized. For N even and k < n it holds
that

2 2
i A _H —1)2 9_ _ C_1)2
TGIgJI\II,lk,w 51.1.d.(T) — 2 n(pN,w 1) + 2 (k 1)(03,m1n 1)
62 o? o?
+ ?(n - k)(pN,w - 1)2 + 7(k - 1)6‘32,min + 7(” - k)p?\’,w

92 o2 02 o2
+ min {E(PN,w -1)%+ jpﬁv,w E(Cmmn -1)%+ 7032,min}'

For k = n we have
M2 2 6° 2
i ii.d. - 5 min_1 e min_1
régn Eia(T) =5n(C, )"+ 5 (Ce, )
92 2

2 o’ 2 g 2
+ ?(n - 1)(03,min - 1) + 702,min + 7(” - 1>03,min'
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The minimal risk is attained in both cases. For N odd and k < n it holds for the
minimal risk

62 62

: - _ o o 2 z o o 2
Te%lzlvl,lk,w 61.1.d.(T) 2 (k 1)(03,max 1) + D) (?’L k)(pN,w 1)
2 2
+ %(k - 1)C§,max + %(n - k")p?\],w

2 92 2
+ min {%n(CQ,max —-1)%+ ?(CQ,max —1)%+ %Cimax,

2 92 o?
X %n(pN,w - 1)2 + 7(03,max - 1)2 =+ 7032,max}'

For k = n we have

/1*2 02
min glld(T) = 7”(02,max - 1)2 + 3(02,max - 1)2

TEBN k,w

2 2

2
+ 5 (0= D)(Chax = 1)+ T O3 s + G (0 = 1)C5 e

Again, in both cases the minimal risk is attained.

The proof is a long computation along the same lines as the proof of Theorem [4.3]

and can be found in

Remark 4.1. All the risks in the unrolling case depend on the stepsize w and it
seems desirable to compute the best w and the respective best risks in all cases.
These computations are quite cumbersome due the complicated expressions and
case distinctions. However, we performed some of the computations in[Appendix A]
One result that is, in our opinion, remarkable is that the best risk is independent of
the number of iterations N in the even case for both data models. In the odd case,
we could not explicitly optimize over w, since the risks depend on the quantity cy .,
which cannot be computed explicitly. In Sec. Bl we use numerical optimization to
show results for optimized w.

5. Visualization

In this section, we provide some visualizations to illustrate the results from previous
sections and give an experiment with real-world data. The section is divided into
three parts. The first subsection contains a relative comparison of the best risks
of each approach with the best linear risk and also with each other. In the second
subsection, we compare the two approaches in an experiment with real-world data
and observe some, but not all, of the theoretically proven results. In the third part,
we give possible explanations for the differences in theory and practice.
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5.1. Best risks

We start with comparing the risk of each approach with the corresponding best
linear risk. Since we are not interested in the actual values of the risks, we compare
risk ratios, i.e. in this case, quotients of the best linear risk and the risk of some
other estimator. The risk ratio of the best linear risk and the lower bound of the
bilevel risk, for example, is given by

glincar

Risk Ratio =
bilevel
and by construction it holds that 0 < Risk Ratio < 1. The considered risk ratios are
explicitly mentioned in each figure. To reduce the number of variable parameters,
we can normalize the square of the expected value of the signal u? to one. We do
not lose any generality, since we could just divide the risks in Corollary 21l by u?
and would get
92
1+ —

2 2 07 2
Eeonst. = —5 =T = DLl + 35|17 and

- 1 N1l? 62 112 o? 2
Eiia. = 5lI(T — )1||2+ﬁI\T* I\F+mIITIIF,

which are exactly the risks with ;1 = 1 and scaled versions of 6 and o. Moreover,
we fix n = 500 and consider k =1,...,n.

In Fig. [[(a), we show the risk ratio of the best linear risk and the bilevel risk
for both data models and the given values of the parameters. The risk ratio is
generally much higher for the i.i.d. model than for the model of constant random
vectors meaning that the bilevel estimations are closer to the best linear estimators
in this case. In all cases, increasing k brings the performance of the bilevel method
closer to the best linear model. This is to be expected, since Theorem [B.I] shows
that larger k leads to a more expressive model. Moreover, larger values for the
signal variance 62 lead to a smaller gap in the risks. Note that this is also true for
the constant vectors data model, even though their lines seem to lie on top of each
other.

In the case of unrolling, we have two more parameters, the number of iterations
N and the stepsize w. We show individual figures for an even and an odd case, since
they behave very differently. Moreover, we show the risks for optimal w, i.e. after
the expressions have been optimized with respect to w (see [Appendix A].

Figure[llb) shows the risk ratio for the case of even N. Since, by Remark [A.1], the
risk is independent of the number N of unrolled iterations if one optimizes over the
stepsize w (see for details), we do not show the dependence on N in
these plots. Overall Fig.[Il(b) looks quite similar to Fig.[I(a). In case of the model of
random constant vectors, the plots only differ slightly (see Fig. Bl below for another
visualization), but for the i.i.d. model the risk ratio for unrolling is much higher
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The ratios between the best linear risk and the best unrolling risk for N odd for given
values N =5, n =500, p = 1.0 and different values of o.

than for bilevel. Moreover, the difference between the risk ratios for unrolling and
bilevel increases with higher values of 6.

In Fig. B we compare the best linear risks with the unrolling risk in the odd

case N = 5 for both data models and the given values of the parameters. To
compute the risks in this case ¢y, from Theorem[3.2]is needed and we use numerical
optimization to compute this value. Considering only Fig. 2l(a) which corresponds
to o = 0.9, it seems to show that the ratio is independent of k. However, the plot
for o = 0.1 Fig. (b) shows that the risk ratio in the i.i.d. case increases with
increasing k.

method and the unrolling method, i.e.

Ebilevel

)
gunrolling even

Since Figs. [la) and [(b) look quite similar, we show the risk ratio of the bilevel
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Fig. 3. The ratios between the lower bound of the bilevel risk and the unrolling risk for N even
for given values n = 500, p = 1.0 and different values of o.

for the case of even N for ¢ = 0.9 and ¢ = 0.1 in Fig. Bl Note that in this case
0 < Risk Ratio < 1 does not hold anymore and values greater one are possible
depending on the performance of the two compared approaches. Notably, the risk
ratios are always greater than one, meaning that the unrolling risk is always lower.
Moreover it can be seen that the ratio between the lower bound of the bilevel
risk and the unrolling even risk decreases with increasing k. Considering different
values of o, smaller values lead to a smaller gap in the risks for unrolling and bilevel.
Moreover, larger values for 6 lead to a smaller gap in the risks.

5.2. Experiment on real-world data

We conducted an experiment with speech data from the IEEE speech corpus [48].
Ground truth vectors of length n = 320, extracted from the speech signals, are
contaminated by additive Gaussian noise with zero mean and standard deviation
o = 0.1. We investigate the reconstruction error yielded with unrolled gradient
descent as described in Sec. 2] i.e. we use (2 as optimization objective and
differentiate the outcome of N gradient descent iterations with respect to R. Note
that we use the closed form (2.3) to compute the Nth gradient descent iterate and
TensorFlow’s [I] automatic differentiation capabilities to differentiate (2.3]). More-
over, the upper level problem now consists of minimizing the empirical risk instead
of the true risk. The setup is as follows: The entries of the matrix R are initialized
randomly according to a uniform distribution on the interval [—1/+/n, 1/+/n] which
is a common initialization strategy for recurrent neural networks. We consider both
cases, learnable and fixed w. For the first case, we introduce an auxiliary learnable
parameter « (initialized with —2) and set w = softplus(a) := log(1 + exp(«)) to
ensure positive step sizes. In the latter case, we fix w = softplus(—2). For training
we use the Adam [38] optimizer which is initialized with different decreasing learn-
ing rates between 10~* and 1072. In both Figs. @ and [ confidence intervals are
with respect to those learning rates.
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Fig. 4. Empirical risks for learned and fixed stepsizes in dependence of N.

Best unrolling risk from Theorem 4.3

Fig. 5. Best risks according to Theorem [L3] for some chosen values of 0, and o and w =
log(1 + exp(—2)) (similar to fixed stepsize w in Fig. ) in dependence on N.

In Fig. dl we show the mean squared error, i.e. the empirical risk, for different
values of k in dependence of the number of iterations N. Moreover, we distinguish
between fixed stepsizes and stepsizes which are learned during training. At first,
all risks decrease with increasing N. While for fixed w the risks starts to increase
after some iterations, for learned stepsizes the risk does not change after a few
iterations. This has been proven for the even case as after optimizing over the
stepsize the optimal risk is independent of w. For fixed k, the risk with learned
stepsizes is at least not worse than for fixed stepsizes and better in most cases.
Moreover, increasing k results in lower risks in all cases.

For a comparison we show in Fig. Bl the best risks of the unrolling estimator in
the case of random constant vectors from Theorem[£.:3] We took w exactly as in the
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Fig. 6. Semilogplot of the learned stepsizes in dependence of N.

numerical experiment with fixed stepsize and also for n and k& we chose the same
values. The values of 6, 4 and ¢ have been adapted to bring the plots in the same
order of magnitude, but we stress that the general shape of the risk (first decreasing
and then increasing again) is independent of the choice of these parameters. As can
be seen from Fig. Bl the increase of the MSE for increasing depth N is indeed
predicted by our results and is not an artifact of the training process. Hence, the
worse risks for deeper unrolling are inherent to the unrolling approach and not just
due to insufficient training.

Figure [6] shows the learned stepsizes in dependence of the number of iterations
N. The learned stepsizes decrease with increasing N except for £ = n = 320. In
that case, the stepsize starts increasing after it decreased for a few iterations. Also,
larger k results in smaller learned stepsizes (except for the special case k = n).
Note, that decreasing stepsizes even in regimes of N in which the risk does not
change anymore are not a contradiction to the theory since the risk is independent
of N but w still depends on it.

5.3. Discrepancy in observations

While some of the behavior in the plots of the experiments is according to the theo-
retical results, there are observations which are not following or even contradictory
to the theory. Here, we will give possible explanations for those. While investigat-
ing the plots in Figs. @ and [6] one notices two claims from theory which are not
confirmed from the experiment: The parity of N seems to not make a difference
and increasing k results in different behavior of the learned stepsizes than theory
claims for optimal stepsizes.

To see why the difference in the risks or the stepsizes for an odd or an even
number of iterations is not seen in the experiments we consider the case of n = k =1
which corresponds to R = r being a scalar. Then, the unrolling estimator is also a



Anal. Appl. 2024.22:569-617. Downloaded from www.worldscientific.com

by GERMAN AEROSPACE CENTER (DLR) on 05/02/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Learning variational models with unrolling and bilevel optimization 593

0.6

—5
0.4
—T
—38
—9
—10

0.2

Fig. 7. Therisk forw =01, n =k =1, p = 1.0, 0 = 0.1, 6 = 0.02 and different values (even
and odd) of N.

scalar

1472
and we get the risk
2, p2 2
+0 o
gconst.<T) = MT|T - 1|2 + 7|T|2

2 92 0.2
= ST 1P+ ST -1 + TP = Esa (D)

(especially the two situations of random constant vectors and random i.i.d. vectors
result in the same risk).

The plot in Fig. [ shows the true risk for multiple even and odd N with a
fixed, not optimized w. It can be seen that for small r, the graphs are fairly close
(they all have a local minimum at a small but positive r) and this changes at
around r = 4. While for even N the risk already diverges, there exists a second,
slightly smaller local minimum for odd N around r = 5. Those second local minima
are very steep and hence, not easily reached by optimization methods in practical
applications. Moreover, the steepness increases with increasing N which worsens
the situation. Those steep local minima may lead to the fact that the theoretically
proven difference in unrolling for N even and N odd do not appear in practical
applications, as in practice, one only sees the local minima for small r, and these
are quite close for N even and odd, respectively. Nevertheless, we still have the
results in Theorem B2 proving different expressivity depending on the parity of N.

While the behavior of the risk for increasing k is as shown in the the-
ory (decreasing risk with increasing k), the learned stepsizes in Fig. [ do not
behave as the theoretical optimal stepsizes do. Theory claims, that, with increas-
ing k, the optimal stepsizes increase. In Fig. [0l it is shown that the learned
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stepsizes decrease with increasing k. This, again, supports the conjecture that
(some) optimal risks along with the optimal stepsizes are not reached during the
training.

6. Discussion

We derived best risks and estimators in the case of linear, bilevel and unrolling
estimators for both our data models (some estimators have complicated forms and
can only be found in [Appendix B)). One simple observation is that the best linear
estimator from Sec. 1] is a rank-one matrix in the case of the random constant
model and a convex combination of the identity and a rank-one matrix in the case
of the i.i.d. vectors. By our expressivity results from Sec. B, we see that especially
the bilevel approach can never reach the rank-one estimator as all bilevel estimators
are always of full rank, and for K = n — 1 we can only approximate the optimal
estimator since the lower bound on the eigenvalues in Theorem [B1] is strict. The
unrolling estimators, described in Theorem B.2] behave differently: For even N and
0 < w < 2 we still have estimators of rank n—k and we can get a rank-one estimator
for k = n — 1, but our results from the previous sections show that the optimal
estimators are not reached by unrolling. For odd N we always have a positive lower
bound on all eigenvalues, so the rank-one estimator can never be reached in this
case.

Next, we discuss our results and approach in the light of real-world applications,
and the limitations of our toy model. The models for noise and data that we defined
in Sec.Plare indeed very simple. However, the general problem of denoising is widely
used as a toy model for more complicated models. Moreover, learned denoising is
still an active area of research [62], [65], although in more complicated scenarios than
considered here.

While our noise model (additive white noise) is quite common (and also realistic
in several applications), the data model is extremely simple: The signals are either
constant (random constant) or a slightly perturbed constant (i.i.d. with constant
mean and variance). Random constant vectors are a meaningful first step for the
more realistic model of piecewise constant vectors or even vectors of the form y =
Ei a;¢; with a known and fixed basis ¢; and random coefficients «;. The second
model of i.i.d. vectors has been previously used for theoretical studies of risks of
regression models and is known as “random-effects model”, see, e.g., [27, [51].

Our objective consists of a quadratic discrepancy and a quadratic penalty. The
quadratic discrepancy can be derived as negative log-likelihood of the noise distri-
bution (compare [36] Sec. 3.1]) but the quadratic penalty is not justified by our data
models and is used only for simplicity. However, penalties of the form > 6;p;(R;x)
with weights 6;, real functions p; and matrices R; (sometimes known as field of
experts [55] [56]) are common. Our model is the special case where the R; are row
vectors, p;(t) = t2, §; = 1 for all i. Moreover, quadratic penalties also appear as sub-
problems in iteratively reweighted algorithms [64]. A paper that studies unrolling
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in a quite similar model as we do is [43], where accelerated proximal algorithms are
unrolled and mainly examined experimentally.

Finally, we considered a very simple algorithm to unroll (gradient descent) for
which we could write down all iterates in a fairly simple closed form. However,
gradient descent is a special case of the more general class of proximal gradient
methods and hence, quite realistic in our scenario. While the extension of our
results to proximal gradient methods would require a totally different analysis, the
extension to the more elaborate algorithms like accelerated gradient descent could,
in principle, be done along the lines of the presented work. Moreover, gradient
descent with constant stepsize is exactly the Landweber method [41]. This method,
applied to just the least squares data-fit term, is used as regularization method for
ill-posed inverse problems [28] and it is indeed a regularization when combined with
an appropriate early-stopping technique. In our context, this is exactly unrolling
of gradient descent as a replacement for the exact solution of the lower level
problem.

7. Conclusion and Outlook

In this paper, we started a systematic investigation of the effect of algorithm
unrolling for learning of variational models. Our approach was to consider a simple
example where everything can be computed (almost) explicitly. Even this simple
example illustrates that some phenomena that have been observed in practice can
be explained theoretically, e.g., that learning the stepsize has a big impact while the
number of unrolled iterations may have very different effects. Our analysis relied
on the true risk and a natural next step is to extend this analysis to empirical
risks. Moreover, more general inverse problems could be considered, i.e. we could
replace the lower level problem by min, 1| Az — x|+ %HR(L‘H% [6] as well as more
general regularizers like, e.g., fields of experts regularizers of the form )", 6;p(R;x)
with scalar weights 6;, matrices R; € R™*"™ and functions p : R" — R [20, [56].
However, both these generalizations would need new technical approaches.
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Fig. A.1. The unrolling risks for an odd number of iterations dependent of w for given values

n = 500, p = 1.0, 0 = 0.1 and different values of N and 6 in the random i.i.d. model.

Appendix A. Optimized w for Unrolling

We give the optimal w and its corresponding risk for unrolling in the setting of
N even. Since ¢y, is not known explicitly, we investigate the situation of NV odd
numerically. Plots for both scenarios are given in the visualization part.

Before we start the analysis of optimal w we show the unrolling risk for an odd
number of iterations in the i.i.d. model in dependence of the stepsize w for N = 3
and N = 15, respectively, in Fig. [A.1l Even though the graphs are not the same,
it can be seen that the optimal values for the risks are independent not only from
k but also from the number of unrolled steps N. However, larger values of 6 lead
to a more flat region close to the optimal w which may lead to inaccuracies in the
approximation of ¢y, and thus, calculating the optimal w. Moreover, it can be seen
that larger values of 8 correspond to larger values of the optimal risk.

Random constant vectors

e N even:
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For k < n it is
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e N odd:
Here, we do an numerical investigation of the risk optimized over w since there
are only upper and lower bounds for ¢y ,, which appears in the explicit formulas
of the risk.

Random 1i.i.d. vectors

e N even:
For k < nitis
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2 92
= Enlon =17 + 5 (k= 1)(Comin — 1)?

02 , o2 9 o? 9
+ ?(n - k)(pNWJ - 1) + 7(k - 1)CVB,min + 7(” - k)pN,w

. 92 o2 02 o?
+ mm{?(PN,w — 1)+ 70?\@7 7(03,min — 1)+ 7032,min}'
We consider a case distinction in C3 min = min{ezi%,pjvw} and start with
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that the infimum of [A.2) is given by
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. . 2
with arginf, &iq p=n = 1 £ ¥ W
case, the risk is independent of w and after some transformations we get
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e N odd: In this case, again, we analyze the optimized risk numerically.

Appendix B. Further Proofs

Proof of Lemma [4.1] It is
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It is left to calculate the corresponding risk. We get
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and hence
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a

Proof of Lemma We start by calculating the gradient of & ; 4. with respect

to T and setting it to zero. We get
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which is equivalent to
T = ((6* + o) I + p*117) 10T + p2117)

if (62 + )T + p?117 is invertible.
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Let a,b and ¢ be real numbers.

1
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After we calculated the best estimator it is left to calculate the corresponding risk.

Therefore, we use

o2

T 1=

02 + o2

to calculate the three norms in (T

Mz T
11" —1 B.1
(”H2+92+02 ) (B
*). We have

nu?

(T = D1* =n

et
(02 +02)2 (n/ﬂ +02+02

1>2

TLCT4

- (nﬂ2+92+02)2

and

* 2
1T — 1|

e M2
= —— n _—
(02 +02)2 np? + 0% + o>

2 /A2 2
1> +n(n—1) (7nﬂ2+92+02> >

(ni? + 02 + 02)?2

(n—1)
@)



Anal. Appl. 2024.22:569-617. Downloaded from www.worldscientific.com

by GERMAN AEROSPACE CENTER (DLR) on 05/02/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Learning variational models with unrolling and bilevel optimization 603
by using (B.J). Furthermore, it is by Corollary 21
= (s + s e ).
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Plugging this in the formulae for the risk of the best linear estimator T we get
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Proof of Theorem [4.] Using singular value decomposition we can write

R'R=vxV'
with orthonormal V' € R"*" and ¥ = diag(o1,...,0,) fulfilling 01 > g9 > -+ >
Ok > 041 = -+ - = o, = 0. Plugging this into the objective we get
2 2 k 2 2 k
wo+0 0 9 O 1
gcons . T) = ',1 — B —— —k
W(T) = ;Om)m W+ ;(1+Uj)2+n
k 2
I GOl P o 2
2 (1+40;)? 2

Since the first sum is positive, the value o(n — k)/2 is an obvious lower bound. By
choosing v; such that (v;,1) =0 for j = 1,...,k (which is possible if k¥ < n) and
letting 0; — 00, we see that the first sum can be arbitrarily small.
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In the case k£ = n, we have
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|(v;-,1)]> = n and v; L 1 for j # j* (at this point we do not know the value of j*,
but this does not matter for the following). Thus, the right side is reduced to
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The second term has infimum equal to 0 which is approximated (and not reached)

for 0; — oo. Thus, we have
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Minimizing over o;« > 0 and using that the minimum of (as® + b)/(1 + s)? is
ab/(a + b) we get the sharp lower bound

1 2 2 2.9
Eeom (T) > no - o n(p” +0) ) 0O
2 L 2 n(p? + 62) 4 o2
n
M2 +92

Proof of Proposition 43l Consider the case with k& < n first. Again we argue
by using the representation

1+0’1

T=I+R'R™'=V 1+ op v’
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with orthonormal V' from the proof of Theorem [3.I] and plug T into & 4. defined
in Corollary [ZT] and get

k
) Uj 2 O'j
Eiia (T :—E 1 Py
= = TR = (1+0;)?

1 (
=32 150, g (k).

j=1

To minimize the first sum, we first choose vq,...,v; L1 such that all the inner
2.2 2

products vanish and then we are left with minimizing the function f(s) = 9(117'5"2

. . . .. 2 .. 292
over s. This function has a unique minimum at s = %> and minimal value 0‘§+—902.
Hence, we get as minimal value for the risk:

. 1. o262 o?
1151611& &1 (T) = 2792 & o2 + 7(7@ —)
o

2 92
7(’“@“"’“))-

It is left to show the result for k¥ = n. We now have

- 1 -
1+0’1
T=I+R'R'=V v’
1
L 140,
with orthonormal V' and get
2 " 2 2 " 2 2 "
I oF 5 0 o o 1
Ei1a.(T) = & (v, D)|" + = +—
2 ;(14—0])2 ! 2 ;(Haj)? 2 = (140)
1 HZUJQ' , 1N 0202 + 02
=Y I P 4 5 >
2;(1+O’j)2 J 2;(1+0j)2
2 2
Applying Lemma with ¢; = (1‘15?')2 > 0, we have that v = ﬁl with

(v, 1)]* = n and v; L 1 for j # j*. Thus, the right side is reduced to

1 p*nos. +0%07. + 0% 1 Z 0?03 + o2

2y
2 (1+0;-)2 2 2= (1+0))?
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An optimization over o; > 0 for j = 1,...,n, using that the minimum of (as® +
b)/(1+ s)? is ab/(a + b) and is attained at b/a, gives

o2 6? nu? + 02
6const.(T) = 7 ((TL - 1)92 + o2 + nu2 + 62 + 0—2>'

Moreover, the optimal values for o; are

o? L
an + 027 .7 - .7 9
g5 =
o2 .
7 J#FI
To conclude the proof we assume j* = n without loss of generality. O

Proof of Theorem We start the proof with the situation of k < n. Again we
use the SVD of R (more precisely, the representation RT R = V diag(o)V), the
substitution p; = f(o;) and the abbreviation px, =1 — (1 —w)" and get that

P1

Pk

PN,w

L PN.w]
Plugging this in the objective, we get
2 2 k n
uwe+0 2 2 2
gconst.(T) = 9 Z (p] - 1) |<vj7 1>| + Z (pN7UJ - 1)2|<'Uj, 1>|
j=1 j=k+1

9 [ k
g 2 2
ta lej +(n—k)pn .
=

Applying Lemma 3 with ¢; = (p; — 1)% for j = 1,...,k and (pn — 1)? for j
k+1,...,n, an optimal choice of V' corresponds to |(vj-,1)|> = n and |(v;,1)[?
0,j # j* for some j* € {1,...,n}. Since |(v;,1)|* appears in two different sums, we
have to distinguish two cases. The first case j* € {1,...,k} occurs if (p;» —1)* <
(pNn.w—1)? while the second case j* € {k+1,...,n} occursif (p; —1)* > (pn,w—1)?
for all j € {1,...,k}. We start with the case distinction in the situation of N even.

N even: From Theorem we know that for N even we have 0 < p; <1 — (1 —

W)N = PN,w-
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J*€{1,...,k}: In this case, we have

gconst.(T) <M 2+ 92)( j* — 1 + - ZPJ pr . (B2)

An optimization over p; < pn. gives the optimal values pj. =
min(%,pg\;w) and pj =0 for all j € {1,...,k}\{j"}. Suppose that

2 2 2 2
the minimum in p7. is attained at %. Since both terms, %
as well as py ., are in [0, 1] we have

_np?+6%) 2_ 12 2
(n(u2+92)+a2 ) =5 =D7> (v = 1)

This is a contradiction to j* € {1,...,k}, since in this case, we have
(pj+—1)* < (pnw — 1)%. Thus, we get that pj« = pn with corresponding
risk
2, 2 2
we+0 o
&iia.(T) = 5 (pNw — 1)°n+ > (P?\r,w +(n — k)ﬂ?v,w)- (B.3)

g e{k+1,...,n}: In that case, it is

u? + 62 o2
Econst. (T') = D) (PNw — 1)2” + 5 ZP? +(n— k)p?\/',w . (B4)

Since p; only appears as p?, minimizing over p; gives p; = 0 for all j €
{1,...,k} fulfilling the bounds from Theorem[3.2] and the corresponding risk
is given by

2 2 2
+ 6 o
Eoonst.(T) = 1 5o = 1) + (0 = K)ok (B.5)

Concluding the case distinction in j*, we observe that the expression for Eonst. (')
in (B) is smaller than the one in (B3)). Hence, the case j* € {k+1,...,n} is
always better than j* € {1,..., k}, which proves the claim for N even and k < n.

N odd: For N odd we have from Theorem 3.2 that p; > ¢ .

j*e€{l,...,k}: In this case, we also have to minimize Econst. from (B.2)
and can compute that a minimization over p; > ¢y gives pj. =

max { 20 d p* = for all j € {1.....kW\{*}. Th
n(p2+02)+o2 ENw an Pj = CNw or all 7 € { L) }\{] } €
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corresponding risk is

n(p? + 6%) n(u? + 62) g
5const.(T) = f max m7 CNw ( — 1

N B I h ) ’

— | maxy —=——"—=,CN.w

2 n(p? + 62) + o2’ N,

+(k—1)cy, + (n— k)p?v,w) (B.6)

Note that this case only occurs, if (p5 —1)* < (pnw — 1)%
j*€{k+1,...,n}: Again, an optimization of (B.4) over p; > cn o gives p =
en forall j € {1,...,k} and thus
p? 4 6° 2 ,

o
Eeonst (T) = = —(pnw = 1Pn+ (ke + (0= k)pko).  (BT)

This only occurs if (cy o —1)? > (pnw — 1)2
Thus, for N odd and k < n the optimal risk is obtained for the minimum of (B.6))

and (B7), i.e. we have after some reformulation

0.2

gconst.(T) = 7 ((k - 1)0?\7,0.) + (TL - k)p?\/',w)

2
+ min M2+02 max MCNw -1 n
2 n(p2 +602) + o2’

o n(p? +6%) ’
+ 7max{n(u2 +62) + JQ’CN’“’} ’

2 92 2
L e +6%) o }

2 (pN,w - 1)2 + 70?\/70.1

which proves the claim for N odd and k < n.

It is left to show the result for k = n. In this case, the risk is given by

n

24 g2 o2 U
Econst(T) = 5= (0 = 1)’ v, ) + 5 D 3
j=1

j=1

and no case distinction in j* is needed. Applying Lemma with ¢; = (p; — 1)?

we get

gconst.(T) - f(pj* - 1)2 + % ZP?
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2 2
For N even we optimize over p; < pn ., and get pj. = min {%, pN,w} and
p; =0 for all j # j*. Thus, the optimal risk for N even is

Eoona (T) = "2 £0%) (mm { % ,pN’w} i 1)2

2 p? 4 62) +
o2 n(p? + 62) 2
+7mm{—n(u2+92)+02’pN’w} .

For N odd, an optimization over p; > ¢y results in pj. =

2492 N . .
max{%,c]vw}, p; = cnw for j #j* and

n(p? +6%) n(p? +6%) ’
Eeonat (1) = =g M g 1 ) 5 02 Ny

o n(p? + 6%) s 2
! 7max{m”’“} Ty Dene

which proves the remaining claim for k = n. O

Proof of Theorem [4.4. We proceed analogously to the proof of Theorem
Thus, we consider k < n first. For T' of the form ([@I]) we have again the represen-
tation

P1

Pk

PN,w

PN,w ]

using (L2) and substituting p; = f(o,). Plugging this in the objective function for
the situation of random i.i.d. vectors from Corollary [Z1] we get

n

2 k
€0 (T) =T [ 32 (0 = 1) N D+ 32 (w12l DI

J=1 j=k+1
92 k ) n
+ 3 Dlei—1)"+ > (pvw—1)
=1 j=k+1
0'2 k 2
+ 5 | 2+ (= k)
j=1
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Applying Lemma with ¢; = (p;j —1)* for j = 1,...,k and (pn. — 1)? for
j=k+1,...,n like in the proof of Theorem [£3] an optimal choice of V again
corresponds to |<vj*,1>|2 =n and |(v;, 1)> = 0,7 # j* for some j* € {1,...,n}.
Moreover, the same two cases have to be distinguished, namely j* € {1,...,k} and
g e{k+1,...,n}. We start with the situation of N even.

N even: From Theorem B2 we already have that for N even it is 0 < p; < pn -

Jj* €{1,...,k}: In this case, we have

2 02 [
Ei1a(T) = onlpyr =12+ 5 | Yo(0s = 17 + (0= K)(pn. = 1)?
j=1

+— ZPJ k)P |- (B.8)

Optimizing over p; < pn. gives p;*- = min{—ezfﬂ,pN,w} for all j €
{1,...,k\{s*} and p}. = min {ﬁ%, PN, w} With the same arguments

as in the proof of Theorem [3.2] we get that pj. = py . and after rearranging
we get

2
&iia.(T) = gn(pN,w — 1)

P ’
(k — 1) (mln {m,p]\[7w} — 1)

+(n—k+1)(pNnw — 1)2}

92
i)

0.2

Ty

o ’
(k — 1) min {m, pN,w} +(n—k+ 1)0?\@] - (B.9)

j*e{k+1,...,n}: In that case, it is
Iz 0 &
&i1.a.(T) = Snlpyw — 1) + 5 Z(Pj — 1)’ +(n—k)(pnw —1)?
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Optimizing over p; < pn gives p; = min{ezi—zﬁ,pN,w} for all j €
{1,...,k} with corresponding risk

2

&i1.a.(T) = %n(pN,w - 1)
92 2 2
+5 |k (mln{92 n 2apN,w} - 1) +(n=Fk)onve —1) ]
o2 62 2
+ > kmin{m,pN,w} —l—(n—k)p?\,#‘l. (B.11)

Again, for N even and k < n the optimal risk is obtained for the minimum of
(B9) and (BI). After rearrangement we get

N2 ) 92 . 92 2
gi.i_d.(T) = 7Tl(pN’w — 1) =+ ?(k — 1) <mln {m,p]\f’w} — 1>

92 2

9 O . 02 2
+?(n7k)(p]\f’w71) +7(k1)mln{92 2,pr}

o? (07 o?
+ 5 (n = k)pk, + min {E(pzv,u — 1)+ SN

0 [ . 02 g 02 2
X ? min 02 27pNu) -1 +7H11H mapN,w )

which proves the claim for N even and k < n.

N odd: For N odd we have p; > cn ..

j*€{l,...,k}: In this case, we also have to minimize & ;q. from (B.S) and
some calculation shows that a minimization over p; > ¢y gives pi. =

2 2 .
max { T enf and pj = max { s enw } for all j € {1, K}

{j*}. The corresponding risk is

2 2 2 2
&iia(T) = %n (max {721117-1-9 cN’w} - 1)

nu? + 0% + o2’

a i+ 0° 1 i
max<{ ———————— CNuw ¢ —
np2 + 02 4+ o2’ N,

92

R A 1)2 + (0= ) — 1>2]

92
T3
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n o? nu? + 62 2
— |max{ —————,cN W
2 np? + 02 + g2’

02 ’
+ (k — 1) max{m,CN,w} + (7’L - k)p?\’,w‘| :

(B.12)

Note that this case only occurs if (p%. —1)% < (pn,o — 1)
j*€{k+1,...,n}: Optimizing (BIJ) over p; > cnw gives pj =
max{ez,ﬂ_—ig,c]v,w} for all j € {1,...,k} and thus

2 2 2 2
&iia.(T) = %n(pNW — 1)2 + % (k (max{ei CNM} — 1)

92 + o2’

o B - 1?)
o? 02 2
—+ 7 kmax{m,CN’w} + (nfk)p?v,w . (Blg)

This case occurs if (pf —1)* > (pnw — 1) for all j € {1,...,k}.
Therefore, for N odd and k& < n the optimal risk is obtained for the minimum

between (BI2) and (B.I3). After rearrangement we get

92 92 ’
e, e @) =5k =1 (m{ﬁ N} : 1>
92
+ E(TL - k)(pN,w - 1)2

o2 62 52 9
+ 7(k — 1) max{m,CN7w} + 7(” - k)pN,w

2 2 2 2
. np +0
+mln{7n (max{m,cmw} - 1)

L o2 nu® + 62 2
— max{ —————, ¢
2 nu? + 62 4 o2’ Nyw

N 62 np? + 62 ) 2
— (maxd ————— ¢Nw  — ,
2 nu2+92+02’N’
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2 2 2 2
I 9 O 0
X 7n(pN7w — 1) + 7 max{m,CN7w}

62 02 :
+?<max{m,c]\],w}l> s
which proves the claim for N odd and k < n.

It is left to show the result for £ = n. In this case, the risk is given by

n 02 n 2 n

G0 (T) =3 (0 = los WP+ 5D (0 - 1)+ T3

j=1 j=1 j=1
and no case distinction in j* is needed. Applying Lemma with ¢; = (p; — 1)2,
we get that

u? 2 6% & 2 02
&iia(T) = j(Pj* —1)"n+ 72 (i —1)"+ 72%‘-
j=1 j=1
For N even we optimize over p; < pn ., and get p;f* = min{ﬁ%,pz\;,w} and

% = min {923_%, pN,w} for j # j*. Thus, the optimal risk for NV even is

J
12 . np + 62 2
Euaa D) =y (i { s v} 1)

. np? + 62 ) °
min{ ——— w =
62 °
+(n-1) (mln {m»ﬂN,w} - 1)

N o2 . ”M2+92 2
— |min{ ———+——
2 nﬂ2+92+02apN,w

92
T3

. o2 ( 1) mi 02 2
—(n—1)minqy —— .
2 62 + o2’ PNw
2 2
For N odd, an optimization over p; > cy 4, results in p}. = max { ﬂ%, cN,w},
2 - -5k
p;:max{(p‘iﬁ,c}v,w} for j # j* and

2 2 4 p2 2
1 np + 6
&iia.(T) = — ————:CNw — 1
1.a.(T) 2n<max{n/ﬂ+92+02 CN, } )
62 nu? + 6 ?
+—2 <max{7nu2+92+02’CN’w} 1)
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62 :
+(n—-1) (max{m,cj\r’w} - 1)
2 2 2 2
o nu® + 0
+ 5 maux{nu2 T GQ,CNM}
62 ?
+(n— 1)max{m,c]v,w} 1

which proves the remaining claim for k = n. O
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