Brauer, Christoph and Lorenz, Dirk (2023) Asymptotic Analysis and Truncated Backpropagation for the Unrolled Primal-Dual Algorithm. In: 31st European Signal Processing Conference, EUSIPCO 2023, pp. 860-864. IEEE Xplore. 2023 31st European Signal Processing Conference (EUSIPCO), 2023-09-04 - 2023-09-08, Belgrad, Serbien. doi: 10.23919/EUSIPCO58844.2023.10289985. ISBN 978-946459360-0. ISSN 2219-5491.
PDF
- Only accessible within DLR
798kB | |
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/10289985
Abstract
Algorithm unrolling combines the advantages of model based optimization with the flexibility of data-based methods by adapting a parameterized objective to a distribution of problem instances from a finite sample from that distribution. At inference time, a fixed number of iterations of a suitable optimization algorithm is used to make predictions on unseen data. To compute gradients for learning, the last iterate is differentiated with respect to the parameters by backpropagation schemes that get expensive when the number of unrolled iterations gets large. Therefore, only few unrolled iterations are used which compromises the claimed interpretability in terms of the underlying optimization objective. In this work, we consider convex objective functions, derive an explicit limit of the parameter gradients for a large number of unrolled iterations, derive a training procedure that is computationally tractable and retains interpretability, and show the effectiveness of the method using the example of speech dequantization.
Item URL in elib: | https://elib.dlr.de/199388/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Asymptotic Analysis and Truncated Backpropagation for the Unrolled Primal-Dual Algorithm | ||||||||||||
Authors: |
| ||||||||||||
Date: | 1 November 2023 | ||||||||||||
Journal or Publication Title: | 31st European Signal Processing Conference, EUSIPCO 2023 | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI: | 10.23919/EUSIPCO58844.2023.10289985 | ||||||||||||
Page Range: | pp. 860-864 | ||||||||||||
Publisher: | IEEE Xplore | ||||||||||||
Series Name: | European Signal Processing Conference (EUSIPCO) | ||||||||||||
ISSN: | 2219-5491 | ||||||||||||
ISBN: | 978-946459360-0 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | unrolling, learning to optimize, variational problems, convex optimization, speech dequantization | ||||||||||||
Event Title: | 2023 31st European Signal Processing Conference (EUSIPCO) | ||||||||||||
Event Location: | Belgrad, Serbien | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 4 September 2023 | ||||||||||||
Event End Date: | 8 September 2023 | ||||||||||||
Organizer: | European Association For Signal Processing (EURASIP) | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||
DLR - Research theme (Project): | R - Project Factory of the Future | ||||||||||||
Location: | Stade | ||||||||||||
Institutes and Institutions: | Institut für Systemleichtbau > Production Technologies SD | ||||||||||||
Deposited By: | Brauer, Dr. Christoph | ||||||||||||
Deposited On: | 21 Nov 2023 21:14 | ||||||||||||
Last Modified: | 24 Apr 2024 20:59 |
Repository Staff Only: item control page