Brauer, Christoph und Lorenz, Dirk (2023) Asymptotic Analysis and Truncated Backpropagation for the Unrolled Primal-Dual Algorithm. In: 31st European Signal Processing Conference, EUSIPCO 2023, Seiten 860-864. IEEE Xplore. 2023 31st European Signal Processing Conference (EUSIPCO), 2023-09-04 - 2023-09-08, Belgrad, Serbien. doi: 10.23919/EUSIPCO58844.2023.10289985. ISBN 978-946459360-0. ISSN 2219-5491.
PDF
- Nur DLR-intern zugänglich
798kB | |
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10289985
Kurzfassung
Algorithm unrolling combines the advantages of model based optimization with the flexibility of data-based methods by adapting a parameterized objective to a distribution of problem instances from a finite sample from that distribution. At inference time, a fixed number of iterations of a suitable optimization algorithm is used to make predictions on unseen data. To compute gradients for learning, the last iterate is differentiated with respect to the parameters by backpropagation schemes that get expensive when the number of unrolled iterations gets large. Therefore, only few unrolled iterations are used which compromises the claimed interpretability in terms of the underlying optimization objective. In this work, we consider convex objective functions, derive an explicit limit of the parameter gradients for a large number of unrolled iterations, derive a training procedure that is computationally tractable and retains interpretability, and show the effectiveness of the method using the example of speech dequantization.
elib-URL des Eintrags: | https://elib.dlr.de/199388/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Asymptotic Analysis and Truncated Backpropagation for the Unrolled Primal-Dual Algorithm | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 1 November 2023 | ||||||||||||
Erschienen in: | 31st European Signal Processing Conference, EUSIPCO 2023 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.23919/EUSIPCO58844.2023.10289985 | ||||||||||||
Seitenbereich: | Seiten 860-864 | ||||||||||||
Verlag: | IEEE Xplore | ||||||||||||
Name der Reihe: | European Signal Processing Conference (EUSIPCO) | ||||||||||||
ISSN: | 2219-5491 | ||||||||||||
ISBN: | 978-946459360-0 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | unrolling, learning to optimize, variational problems, convex optimization, speech dequantization | ||||||||||||
Veranstaltungstitel: | 2023 31st European Signal Processing Conference (EUSIPCO) | ||||||||||||
Veranstaltungsort: | Belgrad, Serbien | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 4 September 2023 | ||||||||||||
Veranstaltungsende: | 8 September 2023 | ||||||||||||
Veranstalter : | European Association For Signal Processing (EURASIP) | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Factory of the Future | ||||||||||||
Standort: | Stade | ||||||||||||
Institute & Einrichtungen: | Institut für Systemleichtbau > Produktionstechnologien SD | ||||||||||||
Hinterlegt von: | Brauer, Dr. Christoph | ||||||||||||
Hinterlegt am: | 21 Nov 2023 21:14 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags