Nishi, Yasunari und Knopp, Tobias und Probst, Axel und Grabe, Cornelia und Krumbein, Andreas (2023) Towards Local Application of Data-Driven Turbulence Modeling based on Field Inversion and Machine Learning. In: 21. STAB-Workshop - Jahresbericht 2023, Seiten 148-149. 21. STAB-Workshop, 2023-11-07 - 2023-11-08, Göttingen, Germany.
|
PDF
- Nur DLR-intern zugänglich
634kB |
Offizielle URL: https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/Jahresbericht2023.pdf
Kurzfassung
Recent advancement in data-driven turbulence modeling has shown the potential of the usage of machine learning techniques to enhance classical Reynolds-averaged Navier-Stokes (RANS) turbulence models. However, one of the main limitations of the current data-driven approaches includes their limited applicability to flows that are very similar to the training cases. Moreover, when dataaugmented model is applied to out-of-training flow scenarios, the predictive accuracy is often harmed, i.e., the data-driven turbulence model provides worse prediction than the baseline model. While efforts have recently been made to address such robustness and generalizability issues of data-driven methods by improving the training strategy (e.g., [1,2]), we present a sensor-based approach towards more general data-driven models here, namely the local activation or deactivation of (different) model augmentations depending on the local flow state. For this, physics-based classical sensors and also machine learning classifiers could potentially be used.
| elib-URL des Eintrags: | https://elib.dlr.de/199312/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Towards Local Application of Data-Driven Turbulence Modeling based on Field Inversion and Machine Learning | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | November 2023 | ||||||||||||||||||||||||
| Erschienen in: | 21. STAB-Workshop - Jahresbericht 2023 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 148-149 | ||||||||||||||||||||||||
| Name der Reihe: | Jahresbericht | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | turbulence, data-driven turbulence modeling, adverse pressure gradient | ||||||||||||||||||||||||
| Veranstaltungstitel: | 21. STAB-Workshop | ||||||||||||||||||||||||
| Veranstaltungsort: | Göttingen, Germany | ||||||||||||||||||||||||
| Veranstaltungsart: | Workshop | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 7 November 2023 | ||||||||||||||||||||||||
| Veranstaltungsende: | 8 November 2023 | ||||||||||||||||||||||||
| Veranstalter : | DLR, STAB | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung, D - HighPoint | ||||||||||||||||||||||||
| Standort: | Göttingen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||||||||||||||||||
| Hinterlegt von: | Nishi, Yasunari | ||||||||||||||||||||||||
| Hinterlegt am: | 06 Dez 2023 11:47 | ||||||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags