Nishi, Yasunari und Knopp, Tobias und Probst, Axel und Grabe, Cornelia und Krumbein, Andreas (2023) Towards Local Application of Data-Driven Turbulence Modeling based on Field Inversion and Machine Learning. In: 21. STAB-Workshop - Jahresbericht 2023, Seiten 148-149. 21. STAB-Workshop, 2023-11-07 - 2023-11-08, Göttingen, Germany.
PDF
- Nur DLR-intern zugänglich
634kB |
Offizielle URL: https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/Jahresbericht2023.pdf
Kurzfassung
Recent advancement in data-driven turbulence modeling has shown the potential of the usage of machine learning techniques to enhance classical Reynolds-averaged Navier-Stokes (RANS) turbulence models. However, one of the main limitations of the current data-driven approaches includes their limited applicability to flows that are very similar to the training cases. Moreover, when dataaugmented model is applied to out-of-training flow scenarios, the predictive accuracy is often harmed, i.e., the data-driven turbulence model provides worse prediction than the baseline model. While efforts have recently been made to address such robustness and generalizability issues of data-driven methods by improving the training strategy (e.g., [1,2]), we present a sensor-based approach towards more general data-driven models here, namely the local activation or deactivation of (different) model augmentations depending on the local flow state. For this, physics-based classical sensors and also machine learning classifiers could potentially be used.
elib-URL des Eintrags: | https://elib.dlr.de/199312/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Towards Local Application of Data-Driven Turbulence Modeling based on Field Inversion and Machine Learning | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | November 2023 | ||||||||||||||||||||||||
Erschienen in: | 21. STAB-Workshop - Jahresbericht 2023 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 148-149 | ||||||||||||||||||||||||
Name der Reihe: | Jahresbericht | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | turbulence, data-driven turbulence modeling, adverse pressure gradient | ||||||||||||||||||||||||
Veranstaltungstitel: | 21. STAB-Workshop | ||||||||||||||||||||||||
Veranstaltungsort: | Göttingen, Germany | ||||||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 November 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 8 November 2023 | ||||||||||||||||||||||||
Veranstalter : | DLR, STAB | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung, D - HighPoint | ||||||||||||||||||||||||
Standort: | Göttingen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||||||||||||||||||
Hinterlegt von: | Nishi, Yasunari | ||||||||||||||||||||||||
Hinterlegt am: | 06 Dez 2023 11:47 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags