Ramanath Tarekere, Sindhu und Krieger, Lukas und Heidler, Konrad und Floricioiu, Dana (2022) Mapping the grounding line of Antarctica in SAR interferograms with machine learning techniques. In: Living Planet Symposium. Living Planet Symposium 2022, 2022-05-23 - 2022-05-27, Bonn, Germany.
PDF
3MB |
Kurzfassung
The grounding line marks the transition between ice grounded at the bedrock and the floating ice shelf. Its location is required for estimating ice sheet mass balance [Rignot & Thomas, 2002], modelling of ice sheet dynamics and glaciers [Schoof 2007], [Vieli & Payne, 2005] and evaluating ice shelf stability [Thomas et al., 2004], which merits its long-term monitoring. The line migrates both due to short term influences such as ocean tides and atmospheric pressure, and long-term effects such as changes of ice thickness, slope of bedrock and variations in sea level [Adhikari et al., 2014]. The grounding line is one of four parameters characterizing the Antarctic Ice Sheet (AIS) ECV project within ESA’s Climate Change Initiative (CCI) programme. The grounding line location (GLL) geophysical product was designed within AIS_CCI and has been derived through the double difference InSAR technique from ERS-1/2 SAR, TerraSAR-X and Sentinel-1 data over major ice streams and outlet glaciers around Antarctica. In the current stage of the CCI project, we have interferometrically processed dense time series throughout the year from the Sentinel-1 A/B constellation aiming at monitoring the short-term migration of the DInSAR fringe belt with respect to different tidal and atmospheric conditions. Whereas the processing chain runs automatically from data download to interferogram generation, the grounding line is manually digitized on the double difference interferograms. Inconsistencies are introduced due to varying interpretation among operators and the task becomes more challenging when using low coherence interferograms. On a large scale this final stage of processing is time consuming, hence urging the need for automation. The grounding line is one of four parameters characterizing the Antarctic Ice Sheet (AIS) ECV project within ESA’s Climate Change Initiative (CCI) programme. The grounding line location (GLL) geophysical product was designed within AIS_CCI and has been derived through the double difference InSAR technique from ERS-1/2 SAR, TerraSAR-X and Sentinel-1 data over major ice streams and outlet glaciers around Antarctica. In the current stage of the CCI project, we have interferometrically processed dense time series throughout the year from the Sentinel-1 A/B constellation aiming at monitoring the short-term migration of the DInSAR fringe belt with respect to different tidal and atmospheric conditions. Whereas the processing chain runs automatically from data download to interferogram generation, the grounding line is manually digitized on the double difference interferograms. Inconsistencies are introduced due to varying interpretation among operators and the task becomes more challenging when using low coherence interferograms. On a large scale this final stage of processing is time consuming, hence urging the need for automation. This study further investigates the feasibility of automating the grounding line digitization process using machine learning. The training data consists of double difference interferograms and corresponding manually delineated AIS_CCI GLL’s derived from SAR acquisitions between 1996 - 2020 over Antarctica. In addition to these, features such as ice velocity, elevation information, tidal displacement, noise estimates from phase and atmospheric pressure are analyzed as potential inputs to the machine learning network. The delineation is modelled both as a semantic segmentation problem, as well as a boundary detection problem, exploring popular existing architectures such as U-Net [Ronneberger et al., 2015], SegNet [Badrinarayanan et al., 2017] and Holistically-nested Edge Detection [Xie & Tu, 2015]. The resulting grounding line predictions will be examined with respect to their usability in the detection of short-term variations of the grounding line as well as the potential separation of a signal of long-term migration. The detection accuracy will be compared to the one achieved by human interpreters. Adhikari, S., Ivins, E. R., Larour, E., Seroussi, H., Morlighem, M., and Nowicki, S. (2014). Future Antarctic bed topography and its implications for ice sheet dynamics, Solid Earth, 5, 569–584 Baumhoer, C. A., Dietz, A. J., Kneisel, C., & Kuenzer, C. (2019). Automated extraction of antarctic glacier and ice shelf fronts from sentinel-1 imagery using deep learning. Remote Sensing, 11(21), 2529 Badrinarayanan, V., Kendall, A., Cipolla, R., (2017). Segnet: A deep convolutional encoder-decoder architecture for scene segmentation. IEEE transactions on pattern analysis and machine intelligence. Cheng, D., Hayes, W., Larour, E., Mohajerani, Y., Wood, M., Velicogna, I., & Rignot, E. (2021). Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019. The Cryosphere, 15(3), 1663-1675 Krieger, L., & Floricioiu, D. (2017). Automatic calving front delienation on TerraSAR-X and Sentinel-1 SAR imagery. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., & Milillo, P. (2021). Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning. Scientific reports, 11(1), 1-10. Rignot, E., & Thomas, R. H. (2002). Mass balance of polar ice sheets. Science, 297(5586), 1502-1506. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 978-3-319-24573-7 Schoof, C. (2007). Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664. Xie, S., Tu, Z., 2015. Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1395-1403 Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuña, C., Akins, Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., & Zwally, J., (2004). Accelerated sea-level rise from West Antarctica. Science, 306(5694), 255-258. Vieli, A., & Payne, A. J. (2005). Assessing the ability of numerical ice sheet models to simulate grounding line migration, J. Geophys. Res., 110, F01003, doi:10.1029/2004JF000202
elib-URL des Eintrags: | https://elib.dlr.de/199307/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Mapping the grounding line of Antarctica in SAR interferograms with machine learning techniques | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 23 Mai 2022 | ||||||||||||||||||||
Erschienen in: | Living Planet Symposium | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Glacier, Ice sheet grounding line, InSAR | ||||||||||||||||||||
Veranstaltungstitel: | Living Planet Symposium 2022 | ||||||||||||||||||||
Veranstaltungsort: | Bonn, Germany | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 Mai 2022 | ||||||||||||||||||||
Veranstaltungsende: | 27 Mai 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Projekt Polar Monitor | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||
Hinterlegt von: | Ramanath Tarekere, Sindhu | ||||||||||||||||||||
Hinterlegt am: | 17 Nov 2023 11:17 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags