Otgonbaatar, Soronzonbold und Kranzlmüller, Dieter (2023) A quantum-inspired tensor network for physics-informed neural networks and satellite images. QTML 2023, 2023-11-18 - 2023-11-24, Geneva, Switzerland.
PDF
- Nur DLR-intern zugänglich bis 2 Januar 2025
849kB |
Offizielle URL: https://ieeexplore.ieee.org/document/10282577
Kurzfassung
Deep learning (DL) is one of many successful methodologies to extract informative patterns and insights from ever-increasing noisy large-scale datasets (in our case, satellite images). However, DL models consist of a few thousand to millions of training parameters, which require tremendous electrical power for extracting informative patterns from noisy large-scale datasets (e.g., computationally expensive). Hence, we employ a quantum-inspired tensor network for compressing trainable parameters of physics-informed neural networks (PINNs) in Earth science. PINNs are DL models penalized by enforcing the law of physics; in particular, the law of physics is embedded in DL models. In addition, we apply tensor decomposition to HyperSpectral Images (HSIs) to improve their spectral resolution. A quantum-inspired tensor network is also the native formulation to efficiently represent and train quantum machine learning models on big datasets on GPU tensor cores. Furthermore, the key contribution of this paper is twofold: (I) we reduced the number of trainable parameters of PINNs by using a quantum-inspired tensor network, and (II) we improved the spectral resolution of remotely sensed images by employing tensor decomposition. As a benchmark PDE, we solved Burger’s equation. As practical satellite data, we employed HSIs of Indian Pine, USA, and of Pavia University, Italy.
elib-URL des Eintrags: | https://elib.dlr.de/199187/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
Titel: | A quantum-inspired tensor network for physics-informed neural networks and satellite images | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2 Januar 2023 | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | tensor network, quantum machine learning, quantum computing, physics-informed neural networks, satellite images, hyperspectral datasets | ||||||||||||
Veranstaltungstitel: | QTML 2023 | ||||||||||||
Veranstaltungsort: | Geneva, Switzerland | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 18 November 2023 | ||||||||||||
Veranstaltungsende: | 24 November 2023 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||
Hinterlegt am: | 15 Nov 2023 14:12 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags