Ramanath Tarekere, Sindhu und Krieger, Lukas und Heidler, Konrad und Floricioiu, Dana (2023) Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 183-186. IEEE. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, California, USA. doi: 10.1109/IGARSS52108.2023.10282372. ISBN 979-8-3503-2010-7. ISSN 2153-7003.
|
PDF
42MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10282372
Kurzfassung
Accurate identification of grounding lines is of immense importance for estimating the mass budgets of ocean-terminating ice sheets and glaciers of Antarctica and Greenland. In Differential Interferometric SAR (DInSAR) interferograms, human experts still largely manually digitize grounding lines. The time-consuming nature of this task makes it infeasible to produce timely, continent-wide grounding line mappings. This study employed a Deep Neural Network (DNN) to automate delineation. The Holistically-Nested Edge Detection (HED) network was trained in a supervised manner on features derived from interferometric phase, elevation data, ice velocity, tidal amplitude, atmospheric pressure and corresponding manual delineations. HED-generated lines achieved a median deviation of 209 m with a median absolute deviation of 153 m from manual delineations. The developed automatic pipeline demonstrates the potential for generating spatially and temporally dense mappings of the grounding line.
| elib-URL des Eintrags: | https://elib.dlr.de/199052/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Deep Neural Network Based Automatic Grounding Line Delineation In DInsar Interferograms | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 20 Oktober 2023 | ||||||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/IGARSS52108.2023.10282372 | ||||||||||||||||||||
| Seitenbereich: | Seiten 183-186 | ||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||
| Name der Reihe: | 2023 IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||||||||||
| ISSN: | 2153-7003 | ||||||||||||||||||||
| ISBN: | 979-8-3503-2010-7 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Deep learning, automatic grounding line delineation, Antarctica | ||||||||||||||||||||
| Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||||||
| Veranstaltungsort: | Pasadena, California, USA | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||||||
| Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||||||
| Veranstalter : | IEEE GRSS | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Projekt Polar Monitor II | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||
| Hinterlegt von: | Ramanath Tarekere, Sindhu | ||||||||||||||||||||
| Hinterlegt am: | 13 Nov 2023 13:23 | ||||||||||||||||||||
| Letzte Änderung: | 01 Sep 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags