Otgonbaatar, Soronzonbold und Kranzlmüller, Dieter (2023) Quantum-Inspired Tensor Network for Earth Science. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 788-791. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10282577. ISBN 979-8-3503-2010-7.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10282577
Kurzfassung
Deep Learning (DL) is one of many successful methodologies to extract informative patterns and insights from ever-increasing noisy large-scale datasets (in our case, satellite images). However, DL models consist of a few thousand to millions of training parameters, which require tremendous electrical power for extracting informative patterns from noisy large-scale datasets (e.g., computationally expensive). Hence, we employ a quantum-inspired tensor network for compressing trainable parameters of physics-informed neural networks (PINNs) in Earth science. PINNs are DL models penalized by enforcing the law of physics; in particular, the law of physics is embedded in DL models. In addition, we apply tensor decomposition to HyperSpectral Images (HSIs) to improve their spectral resolution. A quantum-inspired tensor network is also the native formulation to efficiently represent and train quantum machine learning models on big datasets on GPU tensor cores. Furthermore, the key contribution of this paper is twofold: (I) we reduced the number of trainable parameters of PINNs by using a quantum-inspired tensor network, and (II) we improved the spectral resolution of remotely sensed images by employing tensor decomposition. As a benchmark PDE, we solved Burger’s equation. As practical satellite data, we employed HSIs of Indian Pine, USA, and of Pavia University, Italy.
elib-URL des Eintrags: | https://elib.dlr.de/198989/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Quantum-Inspired Tensor Network for Earth Science | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2023 | ||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282577 | ||||||||||||
Seitenbereich: | Seiten 788-791 | ||||||||||||
ISBN: | 979-8-3503-2010-7 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | quantum computing, quantum machine learning, physics-informed neural networks, physics-informed artificial intelligence, quantum physics-informed neural networks, quantum physics-informed artificial intelligence, earth observation, remote sensing, quantum computing for Earth observation (QC4EO), quantum computing for remote sensing (QC4RS) | ||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||
Veranstaltungsort: | Pasadena, CA, USA | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Otgonbaatar, Soronzonbold | ||||||||||||
Hinterlegt am: | 10 Nov 2023 09:59 | ||||||||||||
Letzte Änderung: | 01 Aug 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags