elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

An Educated Guess - Predicting Turbomachinery Efficiencies of Aero Engines During Conceptual Design

Häßy, Jannik und Bolemant, Martin und Richard-Gregor, Becker (2023) An Educated Guess - Predicting Turbomachinery Efficiencies of Aero Engines During Conceptual Design. In: ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023. ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, 2023-06-26 - 2023-06-30, Boston, Massachusetts, USA. doi: 10.1115/GT2023-103638.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Evolutionary advancements and disruptive concepts for future gas turbine-based propulsion systems are researched to reduce the environmental impact of aviation. In the initial design phase, only few data on component efficiencies is available and assumptions have to be introduced. However, comparability and consistency between assumed efficiencies is crucial to benchmark different designs or concepts in a feasible way and to avoid misleading findings. The assumptions made have to reflect the impact of design parameters on efficiency considering underlying physical phenomena. A simple model is developed to predict the design efficiencies of axial flow turbo components of aero engines with the aim to generate traceable, consistent and comparable assumptions for conceptual engine design. The efficiency prediction model combines existing approaches from published sources using a superposition principle and is calibrated by means of available data on engines with an entry into service later than 2010. For a stage-wise evaluation approach, the calibrated model predicts the component efficiencies of database engines with a maximum absolute deviation of 0.1 % for fans, 2.2 % for compressors, 1.4 % for cooled turbines and 0.6 % for low-pressure turbines. The deviations between predictions and database values create a sense for the uncertainty that has to be expected using the calibrated model. The future application of the predictive capability contributes to feasible comparisons between different engine configurations during the conceptual design phase.

elib-URL des Eintrags:https://elib.dlr.de/198821/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:An Educated Guess - Predicting Turbomachinery Efficiencies of Aero Engines During Conceptual Design
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Häßy, JannikJannik.Haessy (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bolemant, Martinmartin.bolemant (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Richard-Gregor, Beckerrichard.becker (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:28 September 2023
Erschienen in:ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1115/GT2023-103638
Status:veröffentlicht
Stichwörter:Aero Engine, Propulsion, Turbomachinery, Efficiency, Conceptual Design
Veranstaltungstitel:ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
Veranstaltungsort:Boston, Massachusetts, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:26 Juni 2023
Veranstaltungsende:30 Juni 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Triebwerkskonzepte und -integration, L - Virtuelles Triebwerk
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Triebwerk
Hinterlegt von: Häßy, Jannik
Hinterlegt am:29 Dez 2023 14:46
Letzte Änderung:24 Apr 2024 20:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.