Stewart, Adam und Lehmann, Nils und Corley, Isaac und Chang, Yi-Chia und Ait Ali Braham, Nassim und Sehgal, Shradha und Robinson, Caleb und Banerjee, Arindam (2023) SSL4EO-L: Datasets and Foundation Models for Landsat Imagery. In: 37th Conference on Neural Information Processing Systems, NeurIPS 2023, 36, Seiten 1-21. NeurIPS 2023 Dataset and Benchmarks, 2023-12-10 - 2023-12-16, New Orleans, USA. ISSN 1049-5258.
PDF
2MB |
Offizielle URL: https://proceedings.neurips.cc/paper_files/paper/2023/file/bbf7ee04e2aefec136ecf60e346c2e61-Paper-Datasets_and_Benchmarks.pdf
Kurzfassung
The Landsat program is the longest-running Earth observation program in history, with 50+ years of data acquisition by 8 satellites. The multispectral imagery captured by sensors onboard these satellites is critical for a wide range of scientific fields. Despite the increasing popularity of deep learning and remote sensing, the majority of researchers still use decision trees and random forests for Landsat image analysis due to the prevalence of small labeled datasets and lack of foundation models. In this paper, we introduce SSL4EO-L, the first ever dataset designed for Self-Supervised Learning for Earth Observation for the Landsat family of satellites (including 3 sensors and 2 product levels) and the largest Landsat dataset in history (5M image patches). Additionally, we modernize and re-release the L7 Irish and L8 Biome cloud detection datasets, and introduce the first ML benchmark datasets for Landsats 4–5 TM and Landsat 7 ETM+ SR. Finally, we pre-train the first foundation models for Landsat imagery using SSL4EO-L and evaluate their performance on multiple semantic segmentation tasks. All datasets and model weights are available via the TorchGeo library, making reproducibility and experimentation easy, and enabling scientific advancements in the burgeoning field of remote sensing for a multitude of downstream applications.
elib-URL des Eintrags: | https://elib.dlr.de/198755/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||||||
Titel: | SSL4EO-L: Datasets and Foundation Models for Landsat Imagery | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | Dezember 2023 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | 37th Conference on Neural Information Processing Systems, NeurIPS 2023 | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||
Band: | 36 | ||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-21 | ||||||||||||||||||||||||||||||||||||
ISSN: | 1049-5258 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | foundation models, self-supervised learning, remote sensing, Landsat | ||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | NeurIPS 2023 Dataset and Benchmarks | ||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | New Orleans, USA | ||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 10 Dezember 2023 | ||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 16 Dezember 2023 | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Wang, Yi | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 06 Nov 2023 14:11 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 13 Nov 2024 15:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags