elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Tension-compression asymmetry of metastable austenitic stainless steel studied by in-situ high-energy X-ray diffraction

Bönisch, Matthias und Barriobero Vila, P. und Dhekne, P. und Stark, Andreas und Schell, Norbert und Ungar, Tamas und Requena, Guillermo und Seefeldt, Marc (2023) Tension-compression asymmetry of metastable austenitic stainless steel studied by in-situ high-energy X-ray diffraction. International Journal of Plasticity, 170. Elsevier. doi: 10.1016/j.ijplas.2023.103767. ISSN 0749-6419.

[img] PDF - Nur DLR-intern zugänglich bis 1 November 2025 - Preprintversion (eingereichte Entwurfsversion)
1MB

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0749641923002516

Kurzfassung

This work studies the tension-compression asymmetry (TCA) of metastable austenitic stainless steel (MASS) in uniaxial loading depending on temperature. In-situ high-energy X-ray diffraction was used to simultaneously probe phase fractions, transformation kinetics, crystallographic texture, lattice strains, strain and stress partitioning between austenite and martensites during quasi-static tensile and compressive deformation at 24, 60 and 100 °C. Complementary relaxed-constraint crystal plasticity simulations and calculations of the mechanical driving force related to the formation of α’ and ε martensites were performed. At 24 °C, martensitic transformations (MTs) prevail, while at 100 °C dislocation slip is the dominant deformation mechanism for both load senses. Macroscopic stress-strain response and transformation behaviour exhibit TCA, with compression promoting the conversion of ε into α’. Transformation kinetics were analyzed in relation to shear banding and the geometric alignment of ε lamellas depending on load sense and temperature. A strong TCA was found for crystallographic texture, bearing signatures of grain rotation due to plastic slip and of MT in case of austenite (γ). For both load senses, the relative strengths of austenite and martensite texture fibres were related to the driving force anisotropy for α’ formation calculated based on the phenomenological theory of martensite crystallography. Texture evolution of α’ is largely controlled by the MT itself, not by grain rotation. Analysis of differently orientated austenite grain families revealed a pronounced TCA of the lattice strains, linked to the γ → ε MT. This was found to be a direct consequence of driving force and volume change related to ε formation. Furthermore, stress is shared differently between austenite and martensites in tension vs. in compression. γ hardens more and hence carries a larger portion of the total stress in compression than in tension. The origin for this TCA could be found in the elasto-plastic accommodation of the volume change related to α’ formation. These findings can aid the development of new material laws for MASSs that are sensitive to load-sense and temperature for advanced forming simulations.

elib-URL des Eintrags:https://elib.dlr.de/198539/
Dokumentart:Zeitschriftenbeitrag
Titel:Tension-compression asymmetry of metastable austenitic stainless steel studied by in-situ high-energy X-ray diffraction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bönisch, MatthiasDepartment of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven B-3001, BelgiumNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Barriobero Vila, P.German Aerospace Center, Institute of Materials Research, Köln, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dhekne, P.Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven B-3001, BelgiumNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stark, AndreasHelmholtz-Zentrum HereonNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schell, NorbertHelmholtz-Zentrum Hereon, Geesthacht, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ungar, TamasDepartment of Materials Physics, Eötvös University Budapest, H-1518, HungaryNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Requena, GuillermoGuillermo.Requena (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Seefeldt, MarcDepartment of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven B-3001, BelgiumNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 November 2023
Erschienen in:International Journal of Plasticity
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:170
DOI:10.1016/j.ijplas.2023.103767
Verlag:Elsevier
ISSN:0749-6419
Status:veröffentlicht
Stichwörter:phase transformation; ductility; anisotropic material; non-destructive evaluation; transformation induced plasticity
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Werkstoffe und Herstellverfahren
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Metallische Strukturen und hybride Werkstoffsysteme
Hinterlegt von: Requena, Guillermo
Hinterlegt am:06 Nov 2023 10:45
Letzte Änderung:06 Nov 2023 10:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.