Belles Ferreres, Andrea und Medina, Daniel und Chauchat, Paul und Labsir, Samy und Vilà-Valls, Jordi (2023) Robust M-Type Error-State Kalman Filters for Attitude Estimation. In: 31st European Signal Processing Conference, EUSIPCO 2023. EUSIPCO 2023, 2023-09-04 - 2023-09-08, Helsinki, Finland. doi: 10.23919/EUSIPCO58844.2023.10289871. ISBN 978-946459360-0. ISSN 2219-5491.
PDF
- Nur DLR-intern zugänglich
418kB |
Kurzfassung
State estimation techniques appear in a plethora of engineering fields. Both standard Kalman filter (KF) and its nonlinear extensions, as well as particle filters, consider a known system model (i.e., functions and noise statistics), an assumption which may not hold in practice. A problem of particular interest is how to deal with outliers in the observation model. A possible solution is to resort to the framework of robust statistics, where a robust score function is used to mitigate the impact of outlying measurements, leading to robust M-type KFs. In this contribution, some of these robust filtering results are extended to the case where states may live on a manifold (unit norm quaternion), and propose robust iterated error-state M-type KF solutions. An illustrative example is provided to show the performance of the proposed filter and support the discussion.
elib-URL des Eintrags: | https://elib.dlr.de/198485/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||
Titel: | Robust M-Type Error-State Kalman Filters for Attitude Estimation | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 10 März 2023 | ||||||||||||||||||||||||
Erschienen in: | 31st European Signal Processing Conference, EUSIPCO 2023 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.23919/EUSIPCO58844.2023.10289871 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
ISSN: | 2219-5491 | ||||||||||||||||||||||||
ISBN: | 978-946459360-0 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | attitude estimation, known system model, M-type KF solutions, noise statistics, nonlinear extensions, observation model, particle filters, robust filtering results, robust iterated error-state, robust M-type error-state Kalman filters, robust M-type KFs, robust score function, robust statistics, standard Kalman filter, state estimation techniques | ||||||||||||||||||||||||
Veranstaltungstitel: | EUSIPCO 2023 | ||||||||||||||||||||||||
Veranstaltungsort: | Helsinki, Finland | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 4 September 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 8 September 2023 | ||||||||||||||||||||||||
Veranstalter : | European Association for Signal Processing (EURASIP) | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - FuturePorts, R - Projekt HIGAIN [KNQ] | ||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nautische Systeme | ||||||||||||||||||||||||
Hinterlegt von: | Belles Ferreres, Andrea | ||||||||||||||||||||||||
Hinterlegt am: | 29 Nov 2023 18:33 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:58 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags