Chen, Ying und Haywood, Jim und Wang, Yu und Malavelle, Florent und Jordan, George und Partridge, Daniel und Fieldsend, Jonathan und De Leeuw, Johannes und Schmidt, Anja und Cho, Nayeong und Oreopoulos, Lazaros und Platnick, Steven und Grosvenor, Daniel P. und Field, Paul und Lohmann, Ulrike (2022) Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover. Nature Geoscience, 15 (8), Seiten 609-614. Nature Publishing Group. doi: 10.1038/s41561-022-00991-6. ISSN 1752-0894.
PDF
- Preprintversion (eingereichte Entwurfsversion)
1MB |
Offizielle URL: https://dx.doi.org/10.1038/s41561-022-00991-6
Kurzfassung
Aerosol–cloud interactions have a potentially large impact on climate but are poorly quantified and thus contribute a substantial and long-standing uncertainty in climate projections. The impacts derived from climate models are poorly constrained by observations because retrieving robust large-scale signals of aerosol–cloud interactions is frequently hampered by the considerable noise associated with meteorological co-variability. The 2014 Holuhraun effusive eruption in Iceland resulted in a massive aerosol plume in an otherwise near-pristine environment and thus provided an ideal natural experiment to quantify cloud responses to aerosol perturbations. Here we disentangle significant signals from the noise of meteorological co-variability using a satellite-based machine-learning approach. Our analysis shows that aerosols from the eruption increased cloud cover by approximately 10%, and this appears to be the leading cause of climate forcing, rather than cloud brightening as previously thought. We find that volcanic aerosols do brighten clouds by reducing droplet size, but this has a notably smaller radiative impact than changes in cloud fraction. These results add substantial observational constraints on the cooling impact of aerosols. Such constraints are critical for improving climate models, which still inadequately represent the complex macro-physical and microphysical impacts of aerosol–cloud interactions.
elib-URL des Eintrags: | https://elib.dlr.de/198390/ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titel: | Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Erschienen in: | Nature Geoscience | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Band: | 15 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1038/s41561-022-00991-6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 609-614 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Verlag: | Nature Publishing Group | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1752-0894 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Holuhraun 2014-2015, Aerosol-cloud, volcanic aerosol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystem-Modellierung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Schmidt, Anja | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 25 Okt 2023 08:26 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 05 Mär 2024 08:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags