Mattenklodt, Lukas and Paintner, Rafael and Keßler, Christoph (2023) HELICOPTER PATH PLANNING USING U-NET INFORMED BIASED SAMPLING. In: DLRK. DEUTSCHER LUFT- UND RAUMFAHRTKONGRESS 2023, 2023-09-19 - 2023-09-21, Stuttgart, Deutschland.
PDF
- Only accessible within DLR
4MB |
Abstract
To increase the safety of helicopter operations during missions in close proximity to obstacles under degraded visual conditions, assistance systems such as obstacle-avoiding path planning algorithms can be used. However, conventional planners may take a long time to find a suitable solution, respectively to converge to an optimum, when used in high dimensional state spaces. This paper describes a method to enhance the convergence time of sampling-based nonholonomic path planning algorithms. To accomplish this, the sampling distribution is biased towards the most promising regions. These distributions are approximated based on the obstacle scenery as well as start and goal state using a U-NET and artificial potential fields. Experiments were conducted with the proposed technique implemented into a BIT*-algorithm - which demonstrated a reduction in average path cost - and into an RRT-algorithm, resulting in improvements in the overall solution cost. This paper applies the described optimization method to planning problems in three dimensions, considering simplified helicopter kinematics, using an expanded Dubins state space
Item URL in elib: | https://elib.dlr.de/198351/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | HELICOPTER PATH PLANNING USING U-NET INFORMED BIASED SAMPLING | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 19 September 2023 | ||||||||||||||||
Journal or Publication Title: | DLRK | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Path Planning, Machine Learning, Dubins Path | ||||||||||||||||
Event Title: | DEUTSCHER LUFT- UND RAUMFAHRTKONGRESS 2023 | ||||||||||||||||
Event Location: | Stuttgart, Deutschland | ||||||||||||||||
Event Type: | national Conference | ||||||||||||||||
Event Start Date: | 19 September 2023 | ||||||||||||||||
Event End Date: | 21 September 2023 | ||||||||||||||||
Organizer: | DGLR | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Aeronautics | ||||||||||||||||
HGF - Program Themes: | Efficient Vehicle | ||||||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||||||
DLR - Program: | L EV - Efficient Vehicle | ||||||||||||||||
DLR - Research theme (Project): | L - Virtual Rotorcraft and Validation | ||||||||||||||||
Location: | Braunschweig | ||||||||||||||||
Institutes and Institutions: | Institute of Flight Systems > Rotorcraft Institute of Flight Systems > Safety Critical Systems&Systems Engineering Institute of Flight Systems > Leitungsbereich FT | ||||||||||||||||
Deposited By: | Paintner, Rafael | ||||||||||||||||
Deposited On: | 28 Nov 2023 11:33 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:58 |
Repository Staff Only: item control page