Carballo, Jose A. und Bonilla, Javier und Fernández-Reche, Jesus und Nouri, Bijan und Ávila-Marín, Antonio und Fabel, Yann und Alarcón-Padilla, Diego-César (2023) Cloud Detection and Tracking Based on Object Detection with Convolutional Neural Networks. Algorithms. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/a16100487. ISSN 1999-4893.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Offizielle URL: https://www.mdpi.com/1999-4893/16/10/487
Kurzfassung
Due to the need to know the availability of solar resources for the solar renewable technologies in advance, this paper presents a new methodology based on computer vision and the object detection technique that uses convolutional neural networks (EfficientDet-D2 model) to detect clouds in image series. This methodology also calculates the speed and direction of cloud motion, which allows the prediction of transients in the available solar radiation due to clouds. The convolutional neural network model retraining and validation process finished successfully, which gave accurate cloud detection results in the test. Also, during the test, the estimation of the remaining time for a transient due to a cloud was accurate, mainly due to the precise cloud detection and the accuracy of the remaining time algorithm.
elib-URL des Eintrags: | https://elib.dlr.de/198310/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Cloud Detection and Tracking Based on Object Detection with Convolutional Neural Networks | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 19 Oktober 2023 | ||||||||||||||||||||||||||||||||
Erschienen in: | Algorithms | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.3390/a16100487 | ||||||||||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||||||
ISSN: | 1999-4893 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | solar energy; neural network; nowcasting; central receiver system | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Condition Monitoring | ||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Nouri, Bijan | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 30 Okt 2023 12:04 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 30 Okt 2023 12:04 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags