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Abstract: Due to the need to know the availability of solar resources for the solar renewable technolo-
gies in advance, this paper presents a new methodology based on computer vision and the object
detection technique that uses convolutional neural networks (EfficientDet-D2 model) to detect clouds
in image series. This methodology also calculates the speed and direction of cloud motion, which
allows the prediction of transients in the available solar radiation due to clouds. The convolutional
neural network model retraining and validation process finished successfully, which gave accurate
cloud detection results in the test. Also, during the test, the estimation of the remaining time for a
transient due to a cloud was accurate, mainly due to the precise cloud detection and the accuracy of
the remaining time algorithm.

Keywords: solar energy; neural network; nowcasting; central receiver system

1. Introduction

Solar energy is the most abundant renewable energy source available in the world.
There are different technologies that can harness solar radiation directly and transform
it into another type of energy, such as concentrated solar power (CSP) and photovoltaic
(PV) technology. However, for energy systems based on these technologies, the transients
and spatial variation of solar power mainly due to clouds cause technical challenges [1,2].
These challenges have to be addressed in order to achieve meaningful solar penetration
under technically and financially viable conditions. For example, in solar central receiver
systems (SCR), the central receiver needs to be protected against temperature peaks due to
transients caused by clouds in order to extend the plant’s entire life cycle [3].

The ability to predict the amount of solar energy that a system can capture and convert
is crucial for optimal system performance and longevity. It can also affect the stability of
the local power grid, which may become vulnerable to cloud shadow effects [4] due to the
growing penetration of solar energy systems. Clouds cause significant intrahour variability
in solar power output, which impacts the dispatchability of solar power plants and the
management of the electricity grid [5,6].

For all these reasons, the accurate prediction of solar energy resource availability,
especially transient cloud behavior, is required [1] and the demand for accurate solar
irradiance nowcasting is increasing due to the rapidly growing share of solar energy on
our electricity grids [5].

The scientific community is working hard to develop techniques to detect clouds and
transients caused by clouds with on-ground cameras and satellite images, as shown by
the numerous reviews and works published on this topic [4,7–9]. Researchers propose
many different methods for cloud detection but most of the reviews conclude that methods
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based on artificial neural networks are needed to overcome the constraints and drawbacks
of traditional algorithms [7,8,10]. Cloud detection methods are classified into traditional
and smart methods. Among the traditional methods, threshold-based, time differentiation,
and statistics methods can be found [8]. The smart methods include convolutional neural
networks (CNN), simple linear iterative clustering, and semantic segmentation algorithms.
The majority of works rely on traditional approaches; however, recent articles show that
this trend might be shifting towards smart approaches [9]. Smart methods have proved to
be more efficient on cloud detection tasks than traditional ones.

Cloud detection and classification are usually a first step in solar forecasting/
nowcasting [10,11]. As an example of an early step, a paper with a quantitative evaluation
of the impact of cloud transmittance and cloud velocity on the accuracy of short-term
direct normal irradiance (DNI) forecasts was published using four different computer
vision methods to detect clouds [12]. Later, a new computer vision method was proposed
using an enhanced clustering algorithm to track the clouds and predict relevant events
based on all-sky images, which can deal with the nature of the variable appearance of
clouds [13]. This new computer vision method showed that the proposed method can
substantially enhance the accuracy of solar irradiance nowcasting methods. Recently, color
space operations and various image segmentation methods were investigated to improve
the visual contrast of the cloud component and a novel approach to calculate cloud cover
under any illumination conditions for short-term irradiance forecasting was presented with
a positive linear correlation between cloud fraction and real-time irradiance data [11].

Regarding smart methods, a recent study proposed a deep learning model suitable for
cloud detection based on a U-Net network and an attention mechanism for cloud detection
for satellite imagery [14]. The results achieved were excellent and show that this network
architecture has great potential for applications in satellite image processing. Furthermore,
another proposed approach is an integrated cloud detection and removal framework
using cascade CNN, which provides accurate cloud and shadow masks and repaired
satellite imagery. One CNN was developed for detecting clouds and shadows from a
satellite image and a second CNN was used for the cloud removal and missing-information
reconstruction. Experiments showed that the proposed framework can simultaneously
detect and remove the clouds and shadows from the images and the detection accuracy
surpassed several recent cloud detection methods [15]. In [10], the capacity of a CNN to
identify the presence of clouds, without ancillary data and at relatively high temporal
resolution, was demonstrated. Recently, a cloud detection method using a multifeature
embedded learning support vector machine to address cloud coverage occupying the
channel transmission bandwidth was presented [16]. Experimental results demonstrate
that the proposed method [16] can detect clouds with great accuracy and robustness.

Regarding ground-based observation, a novel deep CNN model named SegCloud
was proposed and applied for accurate cloud segmentation. SegCloud showed a power-
ful cloud discrimination capability and automatic segmentation of the whole-sky images
obtained by a ground-based all-sky-view camera [17]. Note that one challenge of artifi-
cial neural network approaches is the accessibility of large labeled datasets for training
purposes. Therefore, [18] introduced selfsupervised-based training methods for semantic
cloud classification, using large unlabeled datasets for pretraining. The selfsupervised
pretraining is followed by a supervised training approach with a small manually labeled
dataset. The selfsupervised pretraining methods increased the overall accuracy of semantic
cloud classification by roughly 9%.

The present work arises from and is a natural further step in the ongoing development
of Hel-IoT [19,20] as part of the HelioSun project. Hel-IoT or the smart heliostats concept is
based on the application of techniques derived from industry 5.0, mainly artificial intelli-
gence and computer vision techniques. Thanks to these techniques, Hel-IoT incorporates a
new, intelligent solar tracking system capable of tracking the Sun with just one camera and
one neural network trained for the purpose. The HelioSun project’s main goal is to develop
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more efficient heliostat fields for SCR among others tools, considering the development
of Hel-IoT.

Due to the great relevance of knowing the availability of the solar resource in ad-
vance for the correct control of power generation plants based on solar energy, this paper
presents the first implementation of a novel approach for cloud detection, trajectory, and
transient remaining time prediction making use of computer vision techniques related to
object detection with region proposal techniques based on deep learning with CNN. No
other method is based on object detection and is able to calculate the trajectory and time
remaining. The proposed approach for cloud detection is based on artificial neural net-
works as recommended in previously mentioned studies. Moreover, it was developed with
the main goal of being operable on a wide variety of hardware, including ground-based,
low-cost hardware, and having the ability to be used with smart tracker systems. This first
implementation of the approach using a low-cost system is analyzed and discussed.

2. Methodology

This paper proposes a method based on low-cost cameras and computer vision tech-
niques, specifically a CNN-based object detection technique, to estimate the available solar
energy. The method works as follows: First, a low-cost camera takes a picture of the sky
or the Sun, as shown in Figure 1, and projects the positions of the objects in the sky onto
the camera plane. The image can cover the whole sky or only the sun region, such as the
image used for Hel-IoT. The camera was set to full auto mode with a maximum resolution,
allowing it to adjust parameters like exposure time according to the lighting conditions.
Alternatively, other camera settings such as reducing the exposure time to prevent pixel
saturation near the Sun can be used, but they require further investigation.

Figure 1. Solar tower system and image taken by a camera located in a heliostat.

The next step consists in the development of a machine learning (ML) model, capable
of localizing and identifying multiple objects in a image using a modern CNN [21], in other
words, detecting the Sun and cloud positions in the input image of the model. At this point,
an algorithm developed for this work is used to analyze the previous results and assign an
identifier number to each detected object according to the identifier number of the closest
object of the same class in the previous images of the series of images. Then, the algorithm
compares the results with previous results to compute the cloud and sun movement vectors
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(the white and green lines, respectively, in Figure 2). With the position and the movement
vectors (speed and direction), the transient remaining time (RT in Figure 2 for each detected
cloud) can be computed as the ratio between the distance in pixels to the Sun and the
average of the last five speeds measured for each detected cloud. In Figure 2, in addition to
RT and the movement vector, each object detected is also shown according to its class (the
colored box), the confidence level of each detection, the id number, and the position of each
detected cloud. In this way, a prediction of solar radiation cloud blocking events above the
point where the camera is located can be obtained. Several cameras deployed in a region
allow the algorithm to infer how the transient will affect each of the areas of the region in
which the sensors are installed.

Figure 2. Cloud detection results. White, blue, and green boxes to show cloud, heliostat, and sun
detection, respectively.

For image acquisition and data processing, the presented methodology uses an open,
low-cost hardware platform from the Raspberry Pi Foundation, a Raspberry Pi 4 with 4 Gb
of RAM and a Picam, together with a fish eye lens with 8 Mpx of resolution, for a total
hardware cost of less than EUR 100. The low-cost camera must be located close to the
system that will use the cloud movement information, for example, in the case of Hel-IoT,
it can be incorporated together with the smart solar tracking system [19,20]. In others
cases or other systems, such as PV systems or existing CSP systems, the proposed system
can be located in a representative area of the field. Note that since this new approach can
be implemented with low-cost hardware, a network of systems can be distributed over
very large solar fields without incurring great cost. In this study, the low-cost camera was
installed on a tripod in the northern part of the CESA field. The CESA field is one of the SCR
systems at the Plataforma Solar de Almería (PSA) and is composed of 300 heliostats and an
80-meter high tower. The PSA [22], belonging to the Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas (CIEMAT), is the largest research, development, and
testing center dedicated to concentrated solar technologies.

The software was developed in Python 3.10 [23], using TensorFlow [24] and the object
detection API [21]. TensorFlow is an open source platform for machine learning that
lets researchers push the state of the art in ML by building and deploying ML-powered
applications. The TensorFlow object detection API is an open-source framework built on
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top of TensorFlow that makes it easy to construct, train, and deploy object detection models.
Object detection models employed for detection in images using ML algorithms involve a
CNN that is trained to recognize a series of limited objects. In this work, the EfficientDet-D2
model [25], pretrained on the COCO 2017 dataset [26], was retrained with a PSA dataset
in a computer cluster located at the Centro Extremeño de Tecnologías Avanzadas (CETA-
Ciemat). CETA manages an advanced data processing center, which is one of the most
powerful resources for scientific computing in Spain. The model has an image as input and
the detected objects and their positions in the image as output.

Various advances have been made in recent years towards more accurate object
detection. But, as we move towards a more accurate object detection network, the network
will become more expensive in terms of resource consumption (the number of parameters
and floating point operations per second (FLOPS)). The EfficientDet-D2 model was selected
for the present work among the many available general models for its good balance between
accuracy and resource consumption, see Figure 3. EfficientDet is a new family of object
detection models based on a CNN on which the author developed a baseline network that
they called as EfficientNet, see Figure 4, which was developed by NAS (Neural Architecture
Search) [25]. Before EfficientNet, model architectures were designed by various human
experts but that does not mean we completely explored the space of network architectures.
For this, a model architecture was developed by NAS which used reinforcement learning
under the hood and a EfficientNET was developed with some level of accuracy with the
COCO dataset (COCO AP) and FLOPS as the optimization goal. Then, EfficientNet was
scaled up under different resource constraints to obtain the family of models EfficientDet
(D1, D2, D3. . . ) [25].

Figure 3. EfficientDet accuracy (COCO AP) vs. resource consumption (FLOPs model) of state-of-the-
art object detection models [25].
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Figure 4. EfficientDet basic architecture [25].

The EfficientNet-B2 backbone is a convolutional neural network that was pretrained
on ImageNet and serves as the feature extractor for the object detection task. It has a
width coefficient of 1.1, a depth coefficient of 1.2, and a resolution of 260 × 260 pixels.
It has a hierarchical structure composed of multiple attention and convolution blocks in
cascade, see Figure 4. This modular and scalable structure allows EfficientDet-D2 to strike
an optimal balance between computational efficiency and accuracy in object detection. The
backbone outputs a set of feature maps at different levels, which are then fed into the BiFPN.
The BiFPN is a novel feature fusion module that allows easy and fast multiscale feature
integration. It uses weighted residual connections to combine features from different levels
in both top-down and bottom-up directions. The weights are learned by a fast normalized
fusion operation that avoids the need for extra normalization layers. The BiFPN has a
depth of 5 and a width of 112 channels. The bounding and classification box head is a
simple yet effective module that predicts the bounding boxes and class labels for each
object in the image. It consists of three convolutional layers with 3 × 3 kernels, followed by
two separate output layers for box regression and classification. The box head has a width
of 112 channels and uses sigmoid activation for both outputs.

Any other model available in the API can be used with just a retraining process to
teach the model to detect new objects, unlike most of the previous studies that developed
specific models for this task. The advantage of choosing among different models available
in the API is that these models are in continuous development by a large community of
developers, so models evolve and their performance improves very quickly, unlike with
specific models.

As commented before, the pretrained EfficientDet-D2 model was retrained in this work.
A pretrained model is a saved network that has been previously trained on a large dataset.
If a model is trained on a sufficiently large and general dataset, such as the COCO dataset,
the model will effectively serve as a generic model of the visual world. Then, these learned
feature maps can be used without having to start from scratch, i.e., training a large model on a
large dataset. This technique to transfer the configuration learned to customize the pretrained
model for a given task and reduce the cost of training is known as transfer learning. In this
work, transfer learning was used, taking the EfficientDet-D2 model pretrained on the COCO
2017 dataset as the starting point. Then, the model was retrained with the CESA dataset.

The model was retrained using a supervised learning technique which consists of learning
a function that maps an input to an output based on an example of input–output pairs [27]. In
this case, the model learns to detect objects within an image by training the model with images
and associated object location information as inputs, known as a training dataset. As usual
in supervised learning, the labels, i.e, the object location information, were added manually
in advance. Images together with object location information (hand-labeling was previously
commonly used for training purposes) is known as a training dataset. The training dataset
used in this work consists of more than 1000 images that were captured from the CESA system.
Each image contains several objects of interest, such as the Sun, clouds, and surrounding
heliostats, that affect the amount of solar energy that can be harvested. The images were taken
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at different times of the day and under different weather conditions to cover a wide range of
scenarios and challenges for the object detection task. The labeling work was easily performed
thanks to the Hel-IoT web server (see Figure 5), which is a tool for managing the dataset
(see Figure 5a) and for the creation and labeling of datasets (see Figure 5b) developed at PSA.
One-hundred (100) images were not used during the training, but rather were reserved for use
in validating the training process. In order to improve the dataset quality, a random scale-crop
data augmentation [25] technique was employed. This technique increases the heterogeneity
of the dataset by rescaling and cropping random images from the original dataset to feed the
training process. The rest of the configuration training parameters and hyperparameters of
the models are available in [28]. The same hyperparameter configuration that the developers
of the model optimized was considered, due to it having been optimized by NAS; although
a little readjustment of these values due to the fact that the model was used on a different
dataset was able to improve the performances of the model for this application. However, the
objective of this work was to test the use of the object detection technique, regardless of the
model optimization, for cloud detection and time remaining prediction.

(a) Main screen.

(b) Labeling tool.

Figure 5. Hel-IoT web server.
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The retrained EfficientDet-D2 model in this work can predict four different object
classes: the Sun, heliostat, white Lambertian target, and cloud. Although the most relevant
objects for this work are clouds and the Sun, the other objects can be used for solar tracking
or obtaining valuable information about shadows or blockages. In addition, the model can
be retrained to learn to detect other objects of interest, such us another receiver.

3. Results

The proposed method can be used with different solar technologies of different sizes.
For example, a network of low-cost sensors based on the proposed method can be deployed
in the heliostat field to predict the available solar radiation in SCR, improving the control
of the receiver and helping to avoid temperature peaks in it, which is one of the key issues
in SCR. The same can be done for large photovoltaic plants. Thanks to the low cost of
the sensor, a network of sensors can be used to help control the plant and the stability
of the grid. These sensors and the information about solar radiation transients can also
help with storage management, thermal or electrical, in large plants or small facilities,
contributing to an improvement in the competitiveness of solar technologies and their
greater deployment. The new approach can be used together with smart solar trackers such
as Hel-IoT, using the image for the smart tracking of clouds and predicting the estimated
time for a transient. This new capability gives Hel-IoT the ability to track the Sun, detect
shadows and blockages, and the ability to track clouds.

The first model retraining results show that the model performed well in object
detection and classification and, therefore, produced a good overall result in detecting the
new objects. Figure 6 shows the evolution of the classification, localization, and total losses
during the 80,000 epochs of the retraining process. This figure shows sufficient training
with low error rates. Localization loss is the error generated when placing the detection
of the object in the image. In this study, the localization error was quantified using the
weighted-smooth-l1 function, based on the Huber loss function [29], which describes the
penalty incurred by an estimation procedure. Classification loss is the error made when
assigning a label to the detected object; in this case, a weighted-sigmoid-focal function
was employed. This function is based on the focal loss approach [30], which improves the
learning process with a sparse set of examples and prevents the vast number of negative
classifications from overwhelming the detector during training, achieving state-of-the-art
accuracy and speed. Total loss is composed of both the classification and localization
losses. The optimizer recommended in the API object detection: the momentum optimizer,
with a learning rate = 0.0799, was chosen for the training. The training process finished
with localization, classification, and total validation error values of 3.6 × 10−3, 0.04, and
0.06, respectively, so the retraining was sufficient and finished without overfitting. Table 1
summarizes the main training results.

Figure 6. Loss evolution during the first model retraining.

Table 1. Training results and configuration summary.

Nº Epochs Localization Loss Classification Loss Total LOSS Learning Rate

80,000 3.6 ×10−3 0.04 0.06 0.0799
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This paper presents the first version of the retrained model. However, the Hel-IoT
web server has been running continuously since April 2022. During this time, the neural
network model has been retrained, with supervised learning, several times. The model is
undergoing continuous improvement, as it is periodically retrained with new images in
cases where the detection fails or does not have enough precision.

To test the cloud detection, trajectory, and remaining time calculation, an image
sequence of the PSA sky (Spain) from 24 June 2022 was used. Fifteen images were taken
every ten seconds, then the object detection model identified the objects in the images and
the trajectory algorithm computed the trajectory of every cloud detected together with the
remaining time for the cloud transient.

Figure 7 shows the evolution of the remaining time prediction (blue dots) of the cloud
with identification number 1 in Figure 2, since the cloud was detected for the first time
in the time series (10:01:30), until it began to generate a transient in solar radiation. The
left vertical axis corresponds to the forecast time, the right vertical axis shows the direct
normal irradiation (DNI) during the test, and the horizontal axis represents the real time.
The orange line shows the DNI values during the test and the blue line represents the cloud
transient remaining time if the cloud speed is assumed to be constant. Note that clouds
moving with a nonconstant speed also change their shape, which affects their position
and speed.

Figure 7. Remaining time prediction and direct normal irradiation evolution during the test.

Some instants (numbered in black in Figure 7) were selected and the resulting images
are shown in Figure 8, where the trajectory (white line), the cloud number, the cloud
position, and the estimated remaining time for the transient are shown.

As shown in Figures 7 and 8, the remaining time and the trajectory predicted were
validated by subsequent events. DNI values and image 0 in Figure 8 show a good agreement
between the prediction and the reality. Except for small errors, the calculated trajectory and
the remaining time prediction were the same as in the real events. The root mean squared
error between the remaining time prediction and the remaining time assuming a constant
cloud speed was less than 1.7 sec. Note that at the beginning the absolute error was greater
than the error at the final point. As mentioned before, this may have been due to the fact
that the cloud not only moved, but also changed its shape, which affected the calculation of
its position and, therefore, the calculation of its speed, especially at the beginning of the
detection when the cloud formed or was close to the horizon line. However, during the
rest of the validation, the predicted remaining time and the estimated constant cloud speed
were very similar. Finally, the new approach predicted the moment when the cloud began
to create the transient without error (0 s in Figure 7).

Although the best model predictions were expected with the image taken using the
hardware used to generate the dataset, this model can be used with images from other
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hardware, for instance, sky cameras (see Figure 9). The model can also be retrained with
additional images to adapt it better to other kinds of hardware.

Figure 8. Zoomed images of the selected instants of prediction.

Figure 9. Object detection results from a Mobotix Q25 camera image.
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4. Conclusions and Future Work

As mentioned above, knowing the estimated time for a transient in the available solar
radiation is key to the proper operation of solar technologies and the grid, since, with this
information, it is possible to activate storage systems to supply the transient and keep the
grid stable. Therefore, the prediction of transients is an increasingly demanded feature
for solar technologies, since this feature makes the solar technologies more competitive
and attractive. The method proposed in this paper is not only able to provide the required
information (cloud detection and transient remaining time), but it is also capable of being
implemented in low-cost systems in a simple and robust way.

In this work, with the exception of retraining, which was carried out in CETA facilities,
all the processing was performed with low-cost hardware (object detection model inference,
trajectory, and remaining time estimation). This shows the feasibility of implementing
this methodology on low-cost hardware. Thanks to this, a large number of sensors can
be deployed over large solar fields, increasing the precision of the system without a huge
financial investment. In intelligent tracking systems such as Hel-IoT, the new cloud detec-
tion approach can be implemented in existing hardware together with the tracking system.
As a result, the implementation of this new approach does not imply additional costs.

The methodology is based on computer vision and a CNN. It uses a technique known
as object detection and an algorithm to compute the trajectory together with the remaining
time for a transient to occur. The model presented produced accurate object detection
results, both in detection and location estimations during the test, as expected from the
accurate results obtained in the retraining and validation process. Other available models
can be used if a reduction in the consumption of computational resources or an increase in
accuracy is desired. The generation of the dataset for the retraining and the subsequent
datasets for successive training was carried out using the Hel-IoT web server. This tool,
which was developed for this purpose, proved to be of great help. Despite the low number
of images in the dataset compared to others, the results of the retraining and test were
sufficient thanks to the transfer learning and data augmentation techniques used. However,
the dataset needs to be improved and expanded despite it proving sufficient for the first
test of the methodology. The prediction results regarding the trajectory and remaining time
were in good agreement with the real values in the test. Further periodic tests are planned.
Therefore, it can be assured that this first test was a success and the approach should be
further studied and tested. Regarding the model and cloud detection, the test, training,
and validation results show highly accurate values. On the other hand, regarding the
estimated remaining time, the test result demonstrated that the algorithm for calculating
the remaining time works properly given the accuracy of the performance of the model
among other factors. In conclusion, the first test of the methodology was positive and
showed its great potential and room for improvement; however, the methodology must be
tested and validated in more depth.

New techniques to improve the approach are already being tested, such as the use
of semantic segmentation techniques to obtain greater precision in the estimated time for
the transient. Also, a new dataset is being created with different classes of clouds based
on the impact they have on solar radiation. With this, an estimate of the reduction in
solar radiation caused by a cloud can be obtained, together with the estimated time for the
transient event. Future work on this methodology includes the improvement of the model
and the dataset, new real tests, cross validation with other methods, the implementation of
new previously mentioned techniques, tests to find the best camera configuration, model
hyperparameter optimization, improving the calculation of the speed of the clouds and the
time remaining, and studying how to reduce the net cost even more.
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