elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification

Hochstuhl, Sylvia und Pfeffer, Niklas und Thiele, Antje und Hinz, Stefan und Amao Oliva, Joel Alfredo und Scheiber, Rolf und Reigber, Andreas und Dirks, Holger (2023) Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification. ISPRS Open Journal of Photogrammetry and Remote Sensing, 10. Elsevier. doi: 10.1016/j.ophoto.2023.100047. ISSN 2667-3932.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
20MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2667393223000182?via%3Dihub

Kurzfassung

This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. Pixel-accurate class labels, consisting of 12 different land cover classes, are generated in a semi-automatic process based on an existing biotope type map and visual interpretation of SAR and optical images. Fixed training and test subsets are defined to ensure the comparability of different approaches trained and tested prospectively on the Pol-InSAR-Island dataset. In addition to the dataset, results of supervised Wishart and Random Forest classifiers that achieve mean Intersection-over-Union scores between 24% and 67% are provided to serve as a baseline for future work. The dataset is provided via KITopenData: https://doi.org/10.35097/1700.

elib-URL des Eintrags:https://elib.dlr.de/198123/
Dokumentart:Zeitschriftenbeitrag
Titel:Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hochstuhl, SylviaSylvia.Hochstuhl (at) kit.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pfeffer, NiklasNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thiele, AntjeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hinz, StefanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Amao Oliva, Joel AlfredoJoel.Amao (at) dlr.dehttps://orcid.org/0000-0001-6202-1665NICHT SPEZIFIZIERT
Scheiber, RolfRolf.Scheiber (at) dlr.dehttps://orcid.org/0000-0002-6833-4897NICHT SPEZIFIZIERT
Reigber, AndreasAndreas.Reigber (at) dlr.dehttps://orcid.org/0000-0002-2118-5046NICHT SPEZIFIZIERT
Dirks, Holgerholger.dirks (at) nlwkn.niedersachsen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2023
Erschienen in:ISPRS Open Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:10
DOI:10.1016/j.ophoto.2023.100047
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Vosselman, GeorgeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Elsevier
ISSN:2667-3932
Status:veröffentlicht
Stichwörter:Pol-InSARMulti-frequencyBenchmark datasetLand cover classificationMachine learningWishart classifierRandom forest classifier
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR, R - SAR-Methoden
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Amao Oliva, Joel Alfredo
Hinterlegt am:16 Okt 2023 10:12
Letzte Änderung:09 Apr 2024 14:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.