elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Roof3D: A Real and Synthetic Data Collection for Individual Building Roof Plane and Building Sections Detection

Schuegraf, Philipp und Fuentes Reyes, Mario und Xu, Yajin und Bittner, Ksenia (2023) Roof3D: A Real and Synthetic Data Collection for Individual Building Roof Plane and Building Sections Detection. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Seiten 1-9. ISPRS Geospatial Week, 2023-09-01 - 2023-09-07, Kairo, Ägypten. doi: 10.5194/isprs-annals-X-1-W1-2023-971-2023. ISSN 2194-9042.

[img] PDF
3MB

Kurzfassung

Deep learning is a powerful tool to extract both individual building and roof plane polygons. But deep learning requires a large amount of labeled data. Hence, publicly available level of detail (LoD)-2 datasets are a natural choice to train fully convolutional neural networks (FCNs) models for both building section and roof plane instance segmentation. Since publicly available datasets are often utomatically derived, e.g. based on laser scanning, they lack on annotation accuracy. To complement such a dataset, we introduce manually annotated and synthetically generated data. Manually annotated data is domain-specific and has a high annotation quality but is expensive to obtain. Synthetically generated data has high-quality annotations by definition, but lacks domain-specificity. Moreover, we not only detect individual building section instances, but also roof plane instances. We predict separations not only between individual buildings, but also by a class that describes the line which separates roof planes. The predicted building and roof plane instances are polygonized by a simple tree search algorithm. To achieve more regular polygons, we utilize the Douglas-Peucker polygon simplification algorithm. We describe our dataset in detail to allow comparability between successive methods. To facilitate future works in building and roof plane prediction, our Roof3D dataset is accessible at https: //github.com/dlrPHS/GPUB.

elib-URL des Eintrags:https://elib.dlr.de/198117/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Roof3D: A Real and Synthetic Data Collection for Individual Building Roof Plane and Building Sections Detection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schuegraf, PhilippPhilipp.Schuegraf (at) dlr.dehttps://orcid.org/0000-0003-0836-9040144895415
Fuentes Reyes, MarioMario.FuentesReyes (at) dlr.dehttps://orcid.org/0000-0002-6593-5152NICHT SPEZIFIZIERT
Xu, Yajinyajin.xu (at) dlr.dehttps://orcid.org/0000-0003-2469-7749144895418
Bittner, KseniaKsenia.Bittner (at) dlr.dehttps://orcid.org/0000-0002-4048-3583NICHT SPEZIFIZIERT
Datum:2023
Erschienen in:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.5194/isprs-annals-X-1-W1-2023-971-2023
Seitenbereich:Seiten 1-9
ISSN:2194-9042
Status:veröffentlicht
Stichwörter:AI4BuildingModelling, Convolutional neural networks, deep learning, semantic segmentation, supervised learning, urban areas
Veranstaltungstitel:ISPRS Geospatial Week
Veranstaltungsort:Kairo, Ägypten
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 September 2023
Veranstaltungsende:7 September 2023
Veranstalter :ISPRS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung, D - Digitaler Atlas 2.0
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Schuegraf, Philipp
Hinterlegt am:20 Okt 2023 09:21
Letzte Änderung:24 Apr 2024 20:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.