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ABSTRACT:

Deep learning is a powerful tool to extract both individual building and roof plane polygons. But deep learning requires a large
amount of labeled data. Hence, publicly available level of detail (LoD)-2 datasets are a natural choice to train fully convolutional
neural networks (FCNs) models for both building section and roof plane instance segmentation. Since publicly available datasets
are often automatically derived, e.g. based on laser scanning, they lack on annotation accuracy. To complement such a dataset,
we introduce manually annotated and synthetically generated data. Manually annotated data is domain-specific and has a high
annotation quality but is expensive to obtain. Synthetically generated data has high-quality annotations by definition, but lacks
domain-specificity. Moreover, we not only detect individual building section instances, but also roof plane instances. We predict
separations not only between individual buildings, but also by a class that describes the line which separates roof planes. The
predicted building and roof plane instances are polygonized by a simple tree search algorithm. To achieve more regular polygons,
we utilize the Douglas-Peucker polygon simplification algorithm. We describe our dataset in detail to allow comparability between
successive methods. To facilitate future works in building and roof plane prediction, our Roof3D dataset is accessible at https:
//github.com/dlrPHS/GPUB.

1. INTRODUCTION

Since deep learning was introduced, it is now the state-of-the-
art approach in many engineering disciplines. In remote sens-
ing, deep learning is also the most common workflow when it
comes to extracting semantic or geometric features from im-
agery.

1.1 Problem Statement

One of the most prominent features in urban very high-resolution
(VHR) imagery are building rooftops. They are comprised of
several planes, e.g., a hip roof consists of four roof planes and
a gable roof of two such elements as can be seen on Figure 1.
Additional major roof elements, that we consider as essential
for roof-surface modelling are large dormers. Extracting roof-
tops and their roof planes aids applications that include 3D-
reconstruction, 5G-wave-simulation, solar exposure estimation.
In remote sensing imagery, roof-tops exist in a large variety of
sizes, shapes and spectral appearances. Help to handle them
comes from FCNs, since they are capable of learning hierarch-
ical representations of our target objects in an automatic, data-
driven style. But to train such FCN models, it is crucial to have
a training dataset of a) sufficient variety and sizes, b) annota-
tion quality and c) domain-relatedness. Public datasets, such
as those provided by the federal governments of North-Rhine-
Westphalia (NRW), Germany 1, include a large variety of an-
notated data, but the respective annotations have been detected
automatically by a laser-scanning-based method, which leads to
severe inaccuracies (see Figure 2). Using synthetic data, which
is generated by a procedure as described in (Reyes et al., 2022)
implies high-quality annotations of considerable quantity but
∗ Corresponding author
1 https://www.opengeodata.nrw.de/produkte/geobasis

Figure 1. Visualization of a hip (left) and a gable (right) roof,
consisting of several roof planes.

Figure 2. Visualization of erroneous annotations (left) and
synthetic image + annotation (right).

leads to a domain gap (see Figure 2). Thus, mixing the synthetic
data with real data is a potential approach to have both domain
specificity and accurate labels. Furthermore, spectral features,
such as RGB imagery, can lead to noisy predictions, since a
deep learning model might confuse buildings with roads or im-
pervious surface areas in an image. On the other hand, from
digital surface model (DSM), it can be difficult to disentangle
building roof-tops and high vegetation. Hence, combining both
RGB and DSM as inputs to FCNs possibly helps to make roof
plane instance segmentation more robust.



Name Area Representation Ground Truth Modalities
RoofWorld (Nauata and Furukawa, 2020) - single building planes RGB
RoofVec (Hensel et al., 2021) 2.00 km2 single building planes RGB
ISPRS Potsdam 3.42 km2 tiles footprints RGB+IR+DSM
SemCity (inst) (Roscher et al., 2020) 3.02 km2 tiles sections RGB
UBC (Huang et al., 2022b) 66.12 km2 patch sections RGB
Roof3D (ours) 22.40 km2 patch sections+planes RGB+DSM

Table 1. Comparison of multiple building segmentation datasets. From SemCity, we only consider the tiles with instance level
annotations. We make a difference between tiles and patches, where we consider patches to have a suitable size to feed them to a

neural network during training and tiles to be larger than patches. Patches are usually cropped from tiles.

1.2 Related Work

Since roof plane extraction is an important part of LoD-2 re-
construction of buildings, most works that tackle the problem
of roof plane extraction are in the realm of 3D reconstruction.

Roof-Top Extraction Several works tackle roof-top extrac-
tion. For instance, PolyMapper (Li et al., 2019) directly predicts
buildings and road networks in vector format, but its perform-
ance on CrowdAI (Mohanty et al., 2020) is limited. ASIP (Li
et al., 2020) easily outperforms PolyMapper. It initializes poly-
gons by over-segmenting the image into convex cells and then
refines the polygons by minimizing an energy function that de-
scribes the fidelity of each polygon to the input image and its
complexity. Another method that facilitates roof-top polygon-
ization is that of (Girard et al., 2020), where the authors train a
network to predict both the building and building border class
as well as a frame field, which represents the two possible tan-
gent directions at each building border pixel. The frame field
is used to regularize building borders during training and to
aid the polygonization procedure. But the frame field learn-
ing method does not leverage the DSM. Several other works
tackle the problem of building section instance segmentation.
PolyWorld (Zorzi et al., 2022) even overcomes the perform-
ance of (Girard et al., 2020) and PolyMapper on the CrowdAI
dataset (Mohanty et al., 2020) by training stacked models on
several sub-tasks of building polygonization. Yet PolyWorld is
not able to predict individual roof sections. That problem is
described in (Schuegraf et al., 2022) and an approach that first
segments satellite images into background, building and touch-
ing borders and uses morphology to refine and translate the res-
ults to instance segments. In comparison to Mask-R-CNN (He
et al., 2017), the touching border-based method of (Schuegraf et
al., 2022) produces seamlessly connected neighboring building
sections. Hence, that method is suitable to predict individual
building roof-tops, but it does not infer the roof planes.

Roof-Plane Extraction There are several studies on roof plane
extraction. One work that does not incorporate learning, but re-
lies on hand-crafted features to reconstruct building roof-tops
in 3D is that of (Nex and Remondino, 2012). Their method
relies on the availability of the near-infrared channel, which is
not always the case. Also, this method fails when buildings
are very complicated. (Arefi and Reinartz, 2013) reconstruct
buildings in LoD-2 in a learning-free manner as well, lever-
aging both the DSM and orthorectified image. Although that
approach produces regular reconstructed buildings that improve
over existing 3D models, the learning-free approach relies on
hand-crafted features and is therefore not robust to large vari-
ations in the input data. Deep learning offers more robust fea-
tures to aid remote sensing tasks such as roof plane extraction.
Sat2LoD (Gui et al., 2022) uses both learning and non-learning
based roof-features to generate an LoD-2 model from input im-
agery and DSM. The approach requires prior information of

Figure 3. Visualization of the 5 classes in our segmentation
problem. White is background, red is the building segment

(segment), green separates roof planes (inner), purple separates
building sections (section) and blue represents building edge

(outer).

Figure 4. Distribution of samples in manual, public and
synthetic subsets of our dataset.

building classification and relies on open street map (OSM).
On the other hand, there exist end-to-end trainable methods.
Another work that generates realistic roof-geometry outlines is
RoofGAN, which is a generative adversarial network (GAN),
of (Qian et al., 2020). But RoofGAN is not conditioned on
images, making it impractical to use for roof plane extraction
from remote sensing imagery. (Alidoost et al., 2019) use only
a single overhead image to generate LoD-2 building models.
Their workflow consists of first training two separate networks
for height estimation and roof-line, i.e. eaves, ridge and hip ex-
traction and then using a model based approach to obtain 3D
models of buildings. Although this approach achieves regular-
ized city models, it relies on the predicted heights, which are
not reliably predicted from only an image. (Zhao et al., 2022)
propose a two-stage approach, where in the first stage, a multi-
task module extracts geometric primitives of roof planes. In
the second stage, a graph neural network reconstructs the roof
plane polygon. Their approach is suitable to predict roof plane



polygons, but does lack the inclusion of the DSM.

Related Benchmark Datasets There exist multiple bench-
marks for building roof reconstruction from remote sensing im-
agery. SemCity (Roscher et al., 2020) is desgined to facilitate
research on building instance segmentation with focus on se-
mantic segmentation and roof-part instance segmentation from
multi-spectral and RGB imagery. But SemCity lacks the DSM
as an input, which is also true for the urban building recon-
struction (UBC) dataset (Huang et al., 2022b). In comparison
to SemCity, UBC includes fine-grained roof-type information
to allow LoD-2 building reconstruction. Furthermore, none of
these datasets includes a large amount of buildings, which is
most probably caused by relying on only the costly and lim-
ited manual annotation, which we overcome by integrating both
coarse, publicly available and synthetically generated annota-
tions with manually annotated samples. One dataseset that con-
tains a large number of annotated RGB and DSM patches but
lacks roof plane information is the Potsdam 2D semantic la-
belling contest dataset 2. The City3D (Huang et al., 2022a)
dataset contains 20,000 building instances in LoD-2 along with
airborne lidar point-clouds. In the two works of (Nauata and
Furukawa, 2020) and (Hensel et al., 2021) datasets for roof
geometry extraction along with ortho-imagery are provided, but
DSM data is not included.

Real and Synthetic Data in Remote Sensing The combin-
ation of real and synthetic data has been gaining attention in
remote sensing recently. One such work is that of (Liu et al.,
2022), where the authors use a CycleGAN to translate synthetic
images to the distribution of real images. The pseudo-real im-
ages are then used for training a neural network on aircraft de-
tection. In (Patyk et al., 2020), simulated and real data are lever-
aged together as well. In their work, the authors use synthetic
poultry distributions and aerial imagery jointly to model poultry
populations. Furthermore, (Kong et al., 2020) use synthetic data
to augment real data for building segmentation. There, the au-
thors follow the same paradigm of mixing simulated and real-
istic data in a single dataset as we do.

The contributions of this paper are the following:

• We annotated a single dataset that includes ground truth
for both individual buildings and roof planes.

• We provide the community with a benchmark dataset which
contains not only, as usual, the RGB images, but also DSMs.

• In this paper, we present a method on training a model on a
combination of publicly annotated, synthetically generated
and manually annotated images, in order to use comple-
mentary information from each of it to complete the task
with best possible performance.

2. METHOD

Since we also introduce a baseline method for the provided
dataset, we describe an approach to LoD-2 instance segment-
ation.

2 https://www.isprs.org/education/benchmarks/

UrbanSemLab/2d-sem-label-potsdam.aspx

Architecture Our approach is based on semantic segmenta-
tion of an RGB image and a DSM. We use the Fuse scheme as
in (Henry et al., 2021), which sums feature maps from differ-
ent levels of resolution of two separate encoders at the skip-
connections. Both encoders are based on ResNet-34 (He et
al., 2016) and the decoder has a generic architecture with skip-
connections on four levels of resolution. Our architecture is
generic for bi-modal semantic segmentation tasks. The last
layer of the decoder has five channels, one for the background
channel, one for the LoD-2 separation line, one for the building
section separation line, one for the building edge and one for
the building segment class (find a visualization of the 5 classes
on Figure 3).

Loss Function Next to the architecture, the loss function is
of high importance for the training of deep neural networks in
remote sensing. We use the weighted sum of the weighted cross
entropy loss

LCE(x, y, p, w) = −
4∑

i=0

wi

N∑
n=0

yin · log(p(xi)n) (1)

and dice loss

LDICE(x, y, p) = 1− 2 ·
∑4

i=0

∑N
n=0 yin · p(xi)n∑4

i=0

∑N
n=0 yin + p(xi)n

, (2)

where x is the input comprised of RGB and/or DSM, y is the
ground truth raster, p are the predicted class probabilities, N is
the number of pixels in a training batch and w = [1, 4, 3, 2, 1] is
the manually selected weight vector, to train our FCN architec-
ture in a way that takes the imbalance of classes into account.

Post-Processing Since we want to achieve instance segment-
ation instead of semantic segmentation outputs, we need to post-
process the semantic predictions. We use the third, fourth and
fifth channel of the semantic predictions to generate building
sections as in (Schuegraf et al., 2022), by using both the third
and fourth channel as the watershed-lines. We dilate the water-
shed lines by a radius R = 3, to overcome the issue of small
gaps in separation lines. We apply the same scheme to obtain
LoD-2 sections, but combine the second, third and fourth chan-
nel as the watershed line before dilation.

Polygonization Since most remote sensing applications re-
quire that building layers are in vector format, we apply two
simple steps to convert building section and plane instances to
polygons, that preserve the separation between individual sec-
tions and individual planes. We use the sobel edge detector to
obtain edges surrounding each individual section/plane and a
contour search to convert the edge pixels to polygons. To ob-
tain more regular polygons, we apply the Douglas-Peucker al-
gorithm (Douglas and Peucker, 1973). But the usage of Douglas-
Peucker polygon simplification on the whole instance leads to
overlapping polygons or gaps at the junction of directly neigh-
boring instances. Hence, we apply Douglas-Peucker to the sep-
aration and the result of the surroundings individually, which
leads to both simplified polygons and consistent separations
between them.



Train Test
Buildings Planes Area Buildings Planes Area

Public 49604 70859 17.3 km2 - - -
Synthetic 2944 32649 3.6 km2 - - -
Manual 1074 3609 1.5 km2 932 1949 0.3 km2

Total 53622 107117 22.4 km2 932 1949 0.3 km2

Table 2. Quantitative details of our dataset. By planes we refer to the number of roof-planes.

3. EXPERIMENTS

3.1 Data

The data we use for experimental evaluation is comprised of
three parts all consisting of RGB, DSM and ground truth data.
RGB images are first enhanced by setting all values below the
2nd percentile to zeros and above the 98th percentile to 255.
The remaining values are stretched to the 0 to 255 range and
the images are stored in 8-bit representation. Before model for-
ward passes, the image patch is rescaled to the range [−1, 1].
The DSM is stored as a 32-bit float raster and before passing
the DSM patch to the model, all values below the 2nd percent-
ile are set to −1 and all values above the 95-percentile are set
to 1, whereas the remaining values are stretched to the [−1, 1]
range. All RGB images and DSMs are resampled to 0.3m
ground sampling distance (GSD) using bi-cubic interpolation.
In the following three paragraphs, the respective original GSD
is provided. For all three sub-datasets, polygons in shapefile
format are obtained by various procedures. The shapefiles are
then processed by rasterizing them to roof plane instance maps.
Then, the instance map is used as basis to obtain a map of the
five classes: background, roof plane separation line, individual
building separation line, building edge and building segment.
The separation lines are similar as in (Schuegraf et al., 2022),
where only only a separation line for individual buildings is seg-
mented. In all experiments, the data areas are split in patches of
size 512 × 512 px, with an overlap of 256 px in the horizontal
and vertical directions. The dataset consists of public, synthetic
and manually annotated data. The public and synthetic are used
exclusively for training. The manually annotated data consists
of multiple non-overlapping tiles. One of these tiles is used for
testing and the others for training.

Coarsely-Annotated Public Data Since a large amount of
data is available publicly on the internet, it is straightforward
to use it to train deep neural networks. We use parts of a data-
set from NRW, Germany. The included imagery has red-green-
blue-near infrared channel representation, with original GSD of
0.1m, but we omit the near infrared channel in our experiments.
Additionally, we use the DSM, which has an original GSD of
0.5m, in our dataset. We select 8 areas that are located in the
city of Cologne for training. We extract the roof plane polygons
from the provided CityGML.

Synthetic Data To both compensate the lack of labelled data
and provide a highly accurate ground truth, we also created syn-
thetic data resembling aerial imagery. We used a pipeline sim-
ilar to the one in (Reyes et al., 2022) and a 3D model based
on Paris from the ESRI platform3. We edited the model to in-
clude a larger density of buildings and a LoD-2 representation.
Samples for flat, hip, mansard, gable and gambrel rooftops are
included.
The model was exported as a Wavefront (.obj) file in two ways:
3 https://www.arcgis.com/home/item.html?id=

30d64fcf53a84be8be1d46905534f5bf

as a single object containing the full scene and exporting each
building as a separate object. The former is rendered with the
BlenderProc pipeline (Denninger et al., 2020) to generate an
image similar to what can be acquired with an aerial camera.
We set the camera parameters to simulate a GSD of 30cm with
an otrhographic view. Additionally, we rendered the distance
map from the same point of view, which is later post-processed
to a DSM. Due to its synthetic nature, it is important to mention
that the simulated region does not correspond to a real place.
The second exported case, where each building is considered
as a single object, is also loaded into Blender. The 3D model
is further edited to remove all surfaces except for those be-
longing to the rooftops. This is done by filtering the object
faces with respect to its texture. After the process, only the
rooftop geometry remains and is exported as a Shapefile (.shp)
with BlenderGIS4. As we mentioned above, the geometry of the
buildings was limited to LoD-2 to avoid an excessive number of
planes. This shapefile has a polygon for each plane belonging
to the rooftops.
An additional shapefile is directly generated from the scene in
CityEngine. For this case, we selected only the parcels con-
taining buildings and exported the shapefile directly from the
software. This shows a polygon for each building in the scene,
unlike the previous one, where each polygon represents a plane.
In total the dataset includes an aerial photo, a DSM, a plane
based shapefile and a building based shapefile.

Manually-Annotated Data The gold-standard for annotation
quality is still set by the human annotator (check a crop from our
segmentations on Figure 5). We selected two RGB-DSM-pairs
from the public data provided by NRW in the city of Cologne,
that do not overlap with the areas we chose in the public data
subset. We use one of the areas for evaluation of all our models
and the other one in terms of the manually-annotated training
data subset. As an additional training area, we selected two
RGB-DSM pairs from the city of Berlin, Germany, provided
by the senate administration of Berlin 5 with 0.2m and 1.0m
original GSD respectively. We annotated roof planes and build-
ing sections according to visual inspection, leveraging QGIS
(QGIS Development Team, 2009) as the annotation tool. The
annotation is based on the input image and does not consider the
DSM. Since in very complex situations, it is not always clear
where one building ends and the next one starts in the top-view,
some ambiguities remain. Our manual annotations challenge
methods to annotate what is visible in the top-view.

Overall Quantitative details of the entire dataset and its parts
are given on Tables 1 and 2 and Figure 4. We call our dataset
Roof3D and note the following advantages of our dataset:

• Our dataset has both building instances and roof plane in-
stances matching the building instances.

4 https://github.com/domlysz/BlenderGIS
5 https://www.businesslocationcenter.de/downloadportal/
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Figure 5. Visualization of examples of our annotations. Green lines represent the overlap of building section outlines and roof plane
borders and red lines the remaining roof plane outlines.

• Furthermore, it includes DSM and has considerable size,
which is necessary to train deep neural networks. Only
UBC covers a larger area on Table 1. For the computation
of the areas, we did not consider overlaps for UBC but for
our dataset we did. See Figure 5 for excerpts of all parts
of the dataset.

3.2 Training

We use the AdamW optimizer (Loshchilov and Hutter, 2019) to
train our models with weight decay 0.0001 and an initial learn-
ing rate of 0.001. To improve convergence, we multiply the
learning rate by γ = 0.99 after each epoch. Since pre-trained
weights are not suitable for height features as they are included
in the DSM, we initialize the learnable parameters of the net-
work by the Xavier random initialization scheme. The model
is trained for 150 epochs and we save the model with the low-
est validation loss as the final model. We randomly rotate all
patches in the range of 0◦-360◦ and apply random color jitter
to the RGB patch, since we want to achieve high generalization
capability of the trained model.

3.3 Inference

We perform inference on the whole test area, which is a rect-
angular tile, by cropping patches of size 512 × 512 px with an

overlap of 256 px in horizontal and vertical direction each. The
trained model is used to infer the semantic predictions of the
background, building and separation line classes. The predic-
tion scores are averaged at the overlapping regions, which leads
to 4-time inference in all areas besides the first and last 256
pixels of each row and column, where there are only 2 infer-
ences. The four 256 × 256 px windows at the corners of the
test area are targeted by only a single inference. The predic-
tion of the full test area is converted to classes using the argmax
classifier. In a learning-free post-processing step, the 5-class
prediction is converted into two separate parts. The first part is
for building section instance segmentation including the separ-
ation line between sections, building block surrounding border
and building segment. The building segments gaps are filled
using the predicted roof plane separations and regarding them
as segment. The second part is for roof plane instance seg-
mentation including the separation line between roof planes,
the separation line between sections, the building block sur-
round border and the segment. In both cases, the dilated line
classes are regarded as watershed lines and the segment is re-
garded as the seed. We apply dilation with a disk of radius
R = 3 as the structuring element. To obtain instance maps, we
follow the procedure as described in (Schuegraf et al., 2022).
Afterwards, simple tree search gives us polygons of building



Architecture Modality Public Manual Synthetic IoUinner IoUsection IoUouter IoUsegment IoUmean OA
U-Net-ResNet34 RGB X 0.338 0.317 0.335 0.693 0.421 0.949
U-Net-ResNet34 RGB X X 0.344 0.318 0.335 0.697 0.424 0.949
U-Net-ResNet34 RGB X X 0.342 0.309 0.330 0.700 0.420 0.950
U-Net-ResNet34 RGB X X X 0.348 0.311 0.338 0.698 0.424 0.950
U-Net-ResNet34 DSM X X 0.353 0.217 0.313 0.647 0.382 0.938
U-Net-ResNet34 DSM X X X 0.354 0.238 0.303 0.630 0.381 0.937
Fuse-U-Net-ResNet34 RGB+DSM X X 0.366 0.312 0.360 0.690 0.432 0.948
Fuse-U-Net-ResNet34 RGB+DSM X X X 0.363 0.322 0.356 0.685 0.432 0.948

Table 3. Results of multiple architectures on the semantic segmentation metrics.

Architecture Modality Public Manual Synthetic AP AP50 AP75 APS APM APL AR AR50 AR75 ARS ARM ARL F1INST

U-Net-ResNet34 RGB X 0.167 0.367 0.136 0.073 0.364 0.411 0.329 0.562 0.340 0.176 0.522 0.533 0.222
U-Net-ResNet34 RGB X X 0.169 0.361 0.149 0.080 0.365 0.347 0.325 0.548 0.344 0.181 0.525 0.550 0.222
U-Net-ResNet34 RGB X X 0.149 0.325 0.128 0.063 0.320 0.267 0.329 0.562 0.335 0.181 0.493 0.400 0.205
U-Net-ResNet34 RGB X X X 0.168 0.367 0.148 0.074 0.357 0.374 0.339 0.580 0.359 0.186 0.530 0.517 0.225
U-Net-ResNet34 DSM X X 0.054 0.134 0.040 0.029 0.109 0.192 0.181 0.348 0.176 0.096 0.270 0.213 0.083
U-Net-ResNet34 DSM X X X 0.080 0.185 0.068 0.041 0.156 0.232 0.227 0.419 0.233 0.128 0.316 0.265 0.118
Fuse-U-Net-ResNet34 RGB+DSM X X 0.136 0.292 0.119 0.068 0.275 0.258 0.310 0.527 0.328 0.178 0.453 0.293 0.189
Fuse-U-Net-ResNet34 RGB+DSM X X X 0.153 0.330 0.137 0.068 0.309 0.319 0.333 0.564 0.358 0.187 0.473 0.369 0.210

Table 4. Results of multiple architectures for building section instance segmentation.
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Figure 6. Visualization of the differences between the RGB and
DSM and corresponding semantic (white: background, red:

outer boundary, purple: segment, blue: plane separation)
predictions of both single-modality networks. The green line

represents a predicted section polygon. The absence of a green
line indicates that no sections are detected by the model.

sections and roof planes, which are simplified using Douglas-
Peucker (Douglas and Peucker, 1973) with ϵ = 0.5.

3.4 Metrics

To quantitatively evaluate the predictions of the trained models,
we use two kinds of metrics. Since the baseline method pro-
duces semantic segmentation maps as in-between results, we
use IoU -score

IoUC =
TPC

TPC + FPC + FNC
, (3)

where C ∈ {background, inner, section, outer, segment}, inner
denotes the separation between roof planes that does not be-
long to the separation between sections, section is the separ-
ation between buildings, the class outer is the border of the
whole building block of free-standing individual buildings and
segment are all remaining pixels belonging to buildings, TPC

is the amount of pixels belonging to class C and predicted as
class C, FPC is the amount pixels belonging to any other class

but C and is predicted as C, FNC is the amount of pixels be-
longing to class C but are predicted as any other class but C. To
get a better overview on which experiment gives the best com-
prehensive result, we average the IoU of the foreground classes
inner, section, outer and segment to obtain IoUmean

IoUmean =
IoUinner + IoUsection + IoUouter + IoUsegment

4
. (4)

Furthermore, the overall accuracy

OA =
TP + TN

TP + TN + FP + FN
(5)

gives us insight about the ratio of correctly classified pixels.
Since most of the pixels belong to the background class, we
expect the OA to be much higher than the IoU -scores for the
line classes.

To evaluate the instance segmentation results on a polygon basis,
we use the standard COCO metrics AP and AR, evaluated in
[0.5, 0.95] with steps of [0.05] and for small, medium and large
size objects, augmented by the harmonic mean of AP and AR

F1INST = 2
AP ·AR

AP +AR
(6)

.

The harmonic mean is heavily skewed towards the weaker of
AP and AR. Hence, if we use it to judge the success of our
experiments, we can be certain that our model performs well on
both AP and AR. Since we evaluate the test region not patch
wise but as a larger tile assembled from multiple overlapping
patches, the standard number of detection per sample is not ad-
equate. Instead, we take every detection of our method into
account by adapting the corresponding code in the pycocotools
package.

3.5 Comparison

To demonstrate how our dataset and method add value to the
task of LoD-2 plane and building section instance segmenta-
tion, we carried out multiple experiments. For all experiments,
we use the part of the dataset that comes from a public source
and has coarse ground truth, since the other parts are not large
enough to avoid overfitting. Furthermore, the public data is al-
ways available. We also evaluate the combinations public +



Architecture Modality Public Manual Synthetic AP AP50 AP75 APS APM APL AR AR50 AR75 ARS ARM ARL F1INST

U-Net-ResNet34 RGB X 0.113 0.270 0.092 0.097 0.218 0.102 0.277 0.503 0.290 0.254 0.385 0.340 0.161
U-Net-ResNet34 RGB X X 0.126 0.294 0.106 0.110 0.234 0.101 0.295 0.526 0.311 0.273 0.392 0.300 0.177
U-Net-ResNet34 RGB X X 0.106 0.256 0.083 0.093 0.195 0.102 0.262 0.486 0.263 0.240 0.347 0.240 0.151
U-Net-ResNet34 RGB X X X 0.120 0.278 0.099 0.102 0.239 0.161 0.276 0.500 0.286 0.250 0.402 0.350 0.167
U-Net-ResNet34 DSM X X 0.056 0.161 0.033 0.046 0.120 0.100 0.192 0.396 0.177 0.178 0.235 0.138 0.087
U-Net-ResNet34 DSM X X X 0.068 0.181 0.045 0.061 0.110 0.018 0.211 0.420 0.206 0.207 0.232 0.033 0.103
Fuse-U-Net-ResNet34 RGB+DSM X X 0.112 0.266 0.090 0.092 0.228 0.103 0.270 0.497 0.281 0.247 0.357 0.140 0.158
Fuse-U-Net-ResNet34 RGB+DSM X X X 0.125 0.292 0.104 0.100 0.260 0.185 0.286 0.524 0.301 0.259 0.385 0.283 0.174

Table 5. Results of multiple architectures on roof plane instance segmentation.
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Figure 7. Visualization of a crop of our results. Green lines represent the overlap of building section outlines and roof plane borders
and red lines the remaining roof plane outlines.

manual, public + synthetic and public + manual + synthetic
to justify the use of synthetic data and verify the effectiveness
of even a small amount of additional, hand-annotated data. In
the single modality experiments, we use the U-Net-ResNet34
(Girard et al., 2020) architecture and for the experiments with
bi-modal inputs we use the Fuse-U-ResNet34, since the Fuse-
strategy was previously verified to be effective for building sec-
tion instance segmentation by (Schuegraf et al., 2022). To show
that including DSM is a valuable enrichment of the input fea-
ture space of our network, we train and evaluate models on the
more promising combinations of public + manual and public
+ manual + synthetic. These combinations emerge to be the
higher performing ones, as will be shown in the results section.

4. RESULTS

To obtain an objective perspective on the outcome of the exper-
iments, we look at the quantitative results.

RGB On Table 3, it can be seen, that among the models that
operate on the RGB modality, the combinations public + manual
and public + manual + synthetic have the highest IoUmean val-
ues of 0.424. Furthermore, public + manual has the largest
IoUsection of 0.318 among the experiments on RGB and public
+ manual + synthetic has the highest IoUinner of 0.348. Adding
a small, manually annotated dataset to the public dataset im-
proves the performance in all metrics, but adding our synthetic

data improves especially the inner class. Regarding the build-
ing section instance segmentation results, the combination pub-
lic + manual + synthetic achieves the highest F1INST score
of 0.225 on Table 4. Hence, synthetic data is useful for the
task at hand. On the other hand, the combination of public +
synthetic performs worse with F1INST of 0.205. Accordingly,
combining a large set of coarsely annotated data with data that
has a large domain shift does not lead to an improvement, but
if a small set of manually annotated data is added to the data-
set as well, the performance on section segmentation improves
over the other combinations. We observe similar behavior on
the plane segmentation task using the RGB modality. Here, the
trained model achieves an F1INST of 0.151 on public + syn-
thetic, 0.167 on public + manual + synthetic and 0.177 on pub-
lic + manual (compare Table 5). Therefore, at the LoD-2 plane
task, the combination of public + manual is performing better
than public + manual + synthetic. It is likely due to the pre-
dominant mansard roof-type in the synthetic data, which does
not occur in the test area. Owing to their outstanding perform-
ance, we continue the evaluation on both tasks and the semantic
segmentation metrics on only the combinations public + manual
and public + manual + synthetic.

DSM Quantitatively, the models trained on the height features
are performing worse than all other models. In many cases,
neighboring buildings vary in spectral apperance, but not in
their height profile. Furthermore, due to patterns created by
the upsampling algorithm (publicly available DSMs come with
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of the resolution of the aerial image) height differences can
often hardly be detected because they are not much larger than
the interpolation patterns. Another reason for the weaker per-
formance of the model trained on only DSM when compared
to the result of the RGB-model is that we annotated both the
manual training and test areas using the RGB images (compare
Figure 6).

RGB+DSM The combination of modalities RGB+DSM per-
forms significantly worse on F1INST than only RGB for the
public + manual subsets (0.189 vs. 0.222 on sections, 0.158 vs.
0.177 on planes) and comparable for RGB on public + manual
+ synthetic (0.210 vs. 0.225 on sections, 0.174 vs. 0.167 on
planes). Furthermore, the two models trained on RGB+DSM
outperform the other models in IoUmean, both scoring 0.432,
with the second best model (RGB, public+manual+synthetic)
achieving 0.424. Since the performance of the Fuse-U-Net-
ResNet34 trained on public+manual+synthetic performs quant-
itatively comparable to the U-Net-ResNet34 trained on pub-
lic+manual, we verify that the difference between the two mod-
alities leads to a performance drop of the Fuse-U-Net-ResNet34
(compare Figure 6). If we take into account the semantic seg-
mentation metrics as well, we conclude that the Fuse-U-Net-
ResNet34 is a valuable improvement over the U-Net-ResNet34
operating on only the RGB. As mentioned previously, large
dormers are also regarded as roof planes. Looking at Figure 7,
we observe that the Fuse-U-Net-ResNet34 does not identify the
dormers that are present in the image, DSM and ground truth.
Hence, our model focuses on the other parts of the roof struc-
ture.

5. CONCLUSION

We introduce a benchmark dataset for both roof plane and build-
ing section instance segmentation tasks as the basis for LoD-
2 reconstruction of buildings on aerial imagery and a baseline
method that is suitable for both tasks. Our presented bench-
mark dataset is partitioned of publicly available, manually an-
notated and synthetically generated ground truth. This compos-
ition shows to gain a slight advantage versus other combinations
of the three subsets, although only adding synthetic to the pub-
lic data does not improve segmentation performance. But we
only investigated the simple mixing scheme, where the three
parts are used for training in the same training dataset. Hence,
we pose the question: How can the three parts be combined in
a way that takes into account the size of the publicly available,
the quality and domain specificity of the the manually annot-
ated and the accuracy of the synthetically generated subsets of
the dataset even better? Furthermore, our dataset includes not
only an aerial image, but also the corresponding aerial DSM to
introduce complementary information to the RGB image. The
reader is encouraged to think of alternatives for the fusion at the
skip-connection to leverage both inputs. In the future, we hope
research on individual roof plane and building section segment-
ation is stimulated by offering Roof3D as a benchmark.
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