elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Experimental and Simulative Evaluation of a Reinforcement Learning Based Cold Gas Thrust Chamber Pressure Controller

Hörger, Till und Werling, Lukas und Dresia, Kai und Waxenegger-Wilfing, Günther und Schlechtriem, Stefan (2023) Experimental and Simulative Evaluation of a Reinforcement Learning Based Cold Gas Thrust Chamber Pressure Controller. Aerospace Europe Conference 2023 – 10ᵀᴴ EUCASS – 9ᵀᴴ CEAS, 2023-07-09 - 2023-07-13, Lausanne, Schweitz. doi: 10.13009/EUCASS2023-639.

[img] PDF
1MB

Offizielle URL: file:///C:/Users/hanke/Downloads/EUCASS2023-639.pdf

Kurzfassung

At DLR neural networks, as potential future controller for rocket engines, are studied. A neural network-based chamber pressure controller for a simplified cold gas thruster is presented and analyzed in simulation and experiment. The goal of the controller is twofold: It can track a trajectory with different changes of setpoints and it allows to set and control a wide variety of steady state chamber pressures. The neural network gets feeding line pressure measurement data as input and calculates valve positions as output values. The training phase of the controller is done with a reinforcement learning algorithm in an Ecosim-Pro/ESPSS simulation, that is validated with data from the corresponding experimental set up. To increase the robustness and to allow a transfer from the simulation directly to the test facility domain randomization is applied. The controller is evaluated in simulations and experiment. It was found that - in the range of physically possible operation points - the controller achieves a constantly high reward which corresponds to a low error and a good control performance. In the simulation the controller was able to adjust all required set points with a steady state error of less than 0.1 bar while retaining a small overshoot and an optimal settling time. It is found that the controller is also able to regulate all desired set points in the real experiment. A reference trajectory with different steps, linear and sinus changes in target pressure is tested in simulation and experiment. The controller was in both cases able to successfully follow the given trajectory

elib-URL des Eintrags:https://elib.dlr.de/197950/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Experimental and Simulative Evaluation of a Reinforcement Learning Based Cold Gas Thrust Chamber Pressure Controller
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hörger, TillTill.Hoerger (at) dlr.dehttps://orcid.org/0000-0001-5859-9907NICHT SPEZIFIZIERT
Werling, LukasLukas.Werling (at) dlr.dehttps://orcid.org/0000-0003-4353-2931NICHT SPEZIFIZIERT
Dresia, KaiKai.Dresia (at) dlr.dehttps://orcid.org/0000-0003-3229-5184NICHT SPEZIFIZIERT
Waxenegger-Wilfing, GüntherGuenther.Waxenegger (at) dlr.dehttps://orcid.org/0000-0001-5381-6431NICHT SPEZIFIZIERT
Schlechtriem, StefanStefan.Schlechtriem (at) dlr.dehttps://orcid.org/0000-0002-3714-9664NICHT SPEZIFIZIERT
Datum:2023
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.13009/EUCASS2023-639
Status:veröffentlicht
Stichwörter:Machine Learning, Engine Controller
Veranstaltungstitel:Aerospace Europe Conference 2023 – 10ᵀᴴ EUCASS – 9ᵀᴴ CEAS
Veranstaltungsort:Lausanne, Schweitz
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 Juli 2023
Veranstaltungsende:13 Juli 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Agile Entwicklung von fortschrittlichen Raketenantrieben
Standort: Lampoldshausen
Institute & Einrichtungen:Institut für Raumfahrtantriebe > Satelliten- und Orbitalantriebe
Hinterlegt von: Hörger, Till
Hinterlegt am:28 Nov 2023 15:17
Letzte Änderung:24 Apr 2024 20:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.