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Abstract
At DLR neural networks, as potential future controller for rocket engines, are studied. A neural network-
based chamber pressure controller for a simplified cold gas thruster is presented and analyzed in simulation
and experiment. The goal of the controller is twofold: It can track a trajectory with different changes of
setpoints and it allows to set and control a wide variety of steady state chamber pressures. The neural
network gets feeding line pressure measurement data as input and calculates valve positions as output
values. The training phase of the controller is done with a reinforcement learning algorithm in an Ecosim-
Pro/ESPSS simulation, that is validated with data from the corresponding experimental set up. To increase
the robustness and to allow a transfer from the simulation directly to the test facility domain randomization
is applied. The controller is evaluated in simulations and experiment. It was found that - in the range of
physically possible operation points - the controller achieves a constantly high reward which corresponds
to a low error and a good control performance. In the simulation the controller was able to adjust all
required set points with a steady state error of less than 0.1 bar while retaining a small overshoot and an
optimal settling time. It is found that the controller is also able to regulate all desired set points in the
real experiment. A reference trajectory with different steps, linear and sinus changes in target pressure is
tested in simulation and experiment. The controller was in both cases able to successfully follow the given
trajectory.

1. Introduction and Motivation

Rocket engine thrust control is essential for many applications that are currently of high interest, for example propulsive
landing for launchers as well as planetary or lunar landing systems. In Europe various projects are developing vertical
take of and landing technology [1, 2, 3, 4]. This applications have high demands on the engine control system. Precise
thrust control, restart capabilities and deep throttling are needed to assure soft landing. Moreover, the potential reuse
of engines requires optimal transients e.g. with low thermal loads to avoid damage and adaptive control systems to
handle the degradation of components over time.

Closed loop control of transients in rocket engines, like start-up of the engine, is challenging, du to strong non-
linear behavior. Classic control approaches like PI and PID are used for control of steady state operating points or
minor set point changes [5]. More recently, model-based methods like linear-quadratic regulators (LQR) and model
predictive control (MPC) as well as the inclusion of machine learning techniques are investigated for rocket engine
closed loop transient control [6, 7, 8].

The benefits of an intelligent engine control system used for control reconfiguration and condition monitoring,
have already been investigated in the space shuttle era [9, 10]. In 2019 German Aerospace Center (DLR) started to
investigate machine learning methods for supporting the design and operation of liquid rocket engines and thrusters
[11]. Control systems based on machine learning methods promise several advantages for rocket propulsion systems.
For example the fatigue life at a given thrust level could be expanded with an appropriate damage model. Wall tem-
peratures at specific combustion pressures can be kept under a certain level, or the efficiency at a particular operation
point or during throttling of an engine can be increased. The controller can also deal with pre-trained failure models as
well as react intelligently to changes in the system due to anomalies.

One approach to design closed-loop optimal control laws is deep reinforcement learning (DRL), a sub-field of
machine learning [12]. DRL is applied successfully to areas like robot control [13, 14], drone flight control [15]
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and autonomous driving[16]. One advantage of DRL is that the controller can be derived directly from nonlinear
high sophisticated simulation models, in which gradient information is potentially not accessible to the user [8]. No
derivation of state-space models, model order reduction or linearization is needed as it is required for PID, LQR and
MPC controllers. Furthermore, once the controller is trained, the response time is very short [17]. The utilization
of deep neural networks as controller offers the possibility to design highly non-linear multiple-input multiple-output
controllers, that incorporate all kind of side conditions while delivering a optimal control performance. Nevertheless,
since the stability of these algorithms is not mathematically proven until now, the stability and robustness of the
controller has to be carefully evaluated before use. One possibility is to evaluate the performance and stability of
the control algorithm in multiple simulations and experiments.

In this work, to demonstrate the basic functionality of an artificial neural network trained by a reinforcement
learning algorithm as rocket engine controller, a simplified cold gas system is utilized. This set up allows rapid, cheep
and safe testing while offering the opportunity to conduct real world experiments.

A simulation of the thruster was set up in EcosimPro/ESPSS and validated with experimental data. A Python
interface allows the use of standard implementations of reinforcement learning algorithms also at the test facility. Based
on the simulation model a thrust chamber pressure controller for the named cold gas system is trained. The goal of the
controller is to set different thrust chamber pressures at different feeding line pressures as well as to follow pressure
trajectories. The steady state control deviation should be less than 0.1 bar. Further overshot of less than 0.5 bar and
a optimal settling time is required. The paper discusses the control performance achieved by the neural network in
simulation as well as at the test facility.

2. Experimental Set-Up

A suitable application for a reinforcement learning based controller is for example a 22 N thruster fueled with nitrous
oxide and ethane. Such a system can be constructed either as premixed monopropellant- [18, 19] or bipropellant system.
For the control task, the bipropellant system offers more degrees of freedom. Because of the high vapor pressure of
fuel and oxidizer it is possible to operate the system in self pressurized mode. In a self-pressurized system the tank
pressure decreases over burn-time, as the propellant evaporates and the enthalpy of vaporization cools the remaining
propellant. Therefore, to achieve a constant thrust level, an active control system is needed. Nitrous oxide/ethane offer
a green alternative to the widely used satellite propellant monomethylhydrazine and dinitrogen tetroxide [20]. The
latter are attempted to be replace due to their toxic, carcinogenic and environmentally harmful properties. At DLR
several encouraging green propellants are under investigation [21, 22, 23]. Nitrous oxide/ethane are comparably cheap,
widely accessible and offer a high Isp ≈ 300 s [20].

2.1 Cold Gas Test Set-Up

Since the DRL-control method was never before demonstrated in the field of combustion chamber pressure control,
before conducting hot fire tests with nitrous oxide/ethane, due to safety and efficiency reasons a reduced nitrogen cold
gas system is used for the first tests. The P&ID of the test set up can be seen in Fig 1. Nitrogen is feed by 200 bar
supply pressure. The nitrogen pressure is reduced to a maximum of 100 bar by a PID controlled automatic pressure
regulator of type Tescom ER5000. The pressure controller allows to set different feeding line pressures. An automatic
main valve is used to start and stop the gas flow. After the main valve a Rheonik coriolis mass flow meter is installed,
followed by a proportional control valve of type m-tech MPG 03 PR. The nitrogen is then expanded through a chamber,
initially designed for use with nitrous oxide and ethane. The goal of the controller is to set the chamber pressure to a
desired value by changing the position of the control valve for varying feeding line pressures. All testing is conducted
at DLR Lampoldshausen M11.5 test position [23, 24].
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Figure 1: P&ID of the test set up

2

DOI: 10.13009/EUCASS2023-639



RL-BASED THRUST-CHAMBER PRESSURE CONTROLLER

Three pressure sensors, P_FDL, P_PRE and P_TC (see Fig. 1), are used as input variables for the controller. Further,
the current position of the control valve CV_POS , the desired chamber pressure P_S OLL and the error ERR (difference
between the desired pressure and the measured P_TC) are used as input to the neural network. Based on these values
the network calculates the action value. The output is defined as the relative change of the position of the control
valve dCV_POS/dt. This value is sent to the test facility and changes the position of the control valve. The change
in position of the control valve is limited to 5 % in each time step, due to low movement speed of the valve. The
control frequency is 10 Hz. Since the control valves used for the experiments, have a dead time of about 300 ms and
additionally an opening time of about 2 s to fully open, 10 Hz are sufficient for this setup. In a later set up, faster valves
will be used. The control frequency is then planned to be higher. For comparison, the engine controller of the space
shuttle main engine operated at 50 Hz [5]. Tab. 1 gives an overview about the input and output parameters of the
controller. The test facility is controlled and operated by a python based user interface, that allows the simple inclusion
of neural networks in the workflow [17].

Table 1: Input and output variables of the controller

Input (Observation Space) Output (Action Space) Controlled variable
P_FDL dCV_POS/dt P_TC
P_PRE
P_TC
ERR

P_S OLL
CV_POS

2.2 Training of the Controller

The controller is essentially an artificial neural network (NN). The NN is used as function approximation to map pres-
sure measurement data to valve positions. To act successfully as controller the internal weights of the NN have to be
trained. For the training process reinforcement learning is used. Reinforcement Learning is a sub-field of machine
learning (ML). Generally, in machine learning a large amount of training data is used to find solutions for complex
problems. Three categories (supervised, unsupervised and reinforcement learning) can be distinguished in ML, de-
pending on the quality of information give in the problem [25]. Supervised learning can be applied if the training data
set contains the input and the desired output data. This can be useful to find the corresponding mapping rule between
input and output, that can be used for example for image classification. Whereas in unsupervised learning, the target
output data is unknown. The goal here is to discover structures, similarities or hidden patterns in the input. Such
algorithms can be used e.g. for cluster analysis or to find similarities in data.

Reinforcement learning (RL) is different from supervised and unsupervised learning because no predefined train-
ing datasets is needed. A so-called agent learns self-employed through interaction with a simulation or real-world data.
RL operates in discrete time steps. The underlying principle of RL is visualized in Fig. 2.

Agent
Controller

Environment
Simulation

Eperimental set up

Action at

CV_POS

State st

P_FDL
P_PRE
P_TC
ERR

P_SOLL

Reward rt

Figure 2: Reinforcement learning schematic based on [12]

An agent interacts in discrete time steps t with the environment. The environment has defined states st. In every
time step the agent gets information about the system state from the environment. The environment information known
to the agent is called observation space. The state is rated with a scalar value called reward rt. The reinforcement
learning algorithm optimizes a decision rule, called policy, in a way to maximize the reward accumulated over time. In
deep RL the policy is represented by a deep neural network that acts as function approximation. It maps a state of the
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system to an action at. The agent develops a strategy to maximize the expected cumulative reward G(τ) = E{Σrt} that
it gets. The reward is calculated by a user defined reward function that represents a rating of the state. The cumulative
reward G(τ) is the sum of all single reward values in one episode, where the episode is one sequence of simulation.
Through interaction with the environment the agent gets information, encoded in the reward, which action is best in
which situation. To avoid the expected cumulative reward for long episodes growing to infinity, a discount factor
0 ≤ γ ≤ 1 is introduced (See Eq. 1).

G(τ) = E

 ∞∑
t=0

γtr(st)

 (1)

The value of γ defines how much future rewards come into account for the current action because γ is raised to the
power of t. The whole process can be seen as a trial and error method with integrated feedback in the form of reward.
Tab. 2 summarizes important expressions in RL.

Table 2: Key terms in reinforcement learning [12, 17]

Expression Description

Agent The algorithm or controller. It optimizes the policy.

Environment System that interacts with the agent. In this case the rocket thruster

State Physical state of the system

Reward Scalar value that rates the state of the system. Calculated by a user
defined reward function

Action Control output of the agent. Sent to the environment

Observation Space Variables that serve as input values and system description for the agent

Policy

Decision rule of the agent. A function that maps states to actions. It
defines how the agent reacts to different system states. In deep RL the
policy is an artificial neural network. During training the policy is opti-
mized through the agent to find actions delivering the maximum reward

The reward function should return high values, if the controller is close to the desired thrust chamber pressure and
low values if it is far away from the set point. Furthermore unnecessary valve movement and oscillations should be
punished. The gradient of the reward function with respect to the pressure very close to the set point should be high
enough to allow finding the terminal position. Designing a good reward function is a key challenge when applying
reinforcement learning to a specific problem. For this application the approach in the following algorithm is chosen:

r(t) = Rew1 + Rew2 + Rew3

if ERR < 2 bar then
Rew1 = −

√
ERR

else
Rew1 = −10

end if

Rew2 = −|valvespeed|

if more than 3 time steps ERR ≤ 0.1 bar then
rew3 = 10

else
Rew3 = 0

end if

The reward function r(t) is subdivided in three parts Rew1, Rew2, Rew3, each of which evaluates a different
aspect of the control goal. Rew1 = −10 if the deviation from the set point is 2 bar or higher. Apart from that Rew1
is equal to minus the square root of the control deviation. Rew1 is mainly important at the beginning of the training
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phase, because large deviations are punished with a large negative value while the square root function offers a steeper
gradient close the target pressure than a linear function. Rew2 penalizes valve motion and especially fast valve motion.
This helps to avoid oscillations around the target pressure. However this may also increase the settling time. Finally,
Rew3 supports finding and holding the target pressure. Rew3 = 10 only if the control deviation was less than 0.1 bar
for more than three time steps in succession. The maximum possible reward in one time step is therefor r(t) = 10 and
the undiscounted maximum cumulative reward of one episode is G = 10 · (n − 3) with n time steps in one episode.

In literature a wide variety of RL-algorithms is described. Different learning paradigms can be distinguished, de-
pending on what exactly is optimized: In (Deep) Q-learning [26] the so called optimal action-value function is learned.
Policy optimization algorithms directly learn the policy from policy gradient methods [27]. Actor critic algorithms
try to combine the strengths of Q-learning and policy gradients [28, 29]. On-policy algorithms need completely new
training samples after each policy update, while off-policy algorithms can learn from past samples using replay buffers.

The training of the controller described in this paper is done with the off-policy soft actor critic (SAC) algorithm
[30] in the RAY Rllib implementation [31] (see Tab.3). 6 CPUs are used for training in parallel. The neural network
representing the policy has two hidden layers with 256 neurons each. The activation function is ReLu. Compared
to on-policy algorithms like the widely used PPO [32] or A3C [33], SAC is characterized by a comparatively high
sample efficiency which leads to faster training success. Furthermore, in comparison to other off-policy algorithms
like DDPG [29] or TD3 [28], the training process is stable and less hyper parameter tuning is needed. In SAC beside
the cumulative reward, also the policy-entropy, as a measure of how random the agent acts, is maximized. In this way
the task is completed successfully while acting as randomly as possible [30].The policy is encouraged to exploration
while being robust concerning model and estimation errors [30]. However, several million time steps of training can
be required to train a controller with reinforcement learning. During the training or exploration phase the controller
intentionally may enter system states, that are possibly dangerous for the system. This is fined with a low reward and
is part of a nominal training process where also low reward areas have to be observed by the algorithm. Therefore,
to save cost and to avoid damage of the test facility or test specimen the training process takes place in a simulation
environment.

Table 3: Relevant variables for the training of cold gas thrust chamber pressure controller

Variable Value or range

P_FDL {P_FDL ∈ N|P_FDL ≥ 60 ∧ P_FDL ≤ 90} bar

P_S OLL ({P_S OLL ∈ N|P_S OLL ≥ 50 ∧ P_S OLL ≤ P_FDL})/10 bar

T_FDL {T_FDL ∈ N|T_FDL ≥ 268 ∧ T_FDL ≤ 298} K

Sensor noise
Gaussian distribution with µ = Sensor value and σ = 1. The random
number is multiplied with 0.5 % of the sensor value

Simulated pip length Randomized with normal distribution [0.6, 1.4]

Valve Speed Randomized with normal distribution [0.1, 0.5]

Algorithm SAC

Implementation RAY Rllib 3.0.0.dev

Number CPU 6

Framework torch

NN characteristics: Activation function: ReLu

Two hidden layers of size 256

EcosimPro ESPSS [34] is used as simulator. For training of the controller, a simulation model of the cold gas test
setup up described in section 2.1 is created. The simulation model is validated with data from the experimental setup.
The measured thrust chamber pressure can be reproduced in simulation with a maximum error of 3 % for different
feeding line pressures and valve positions.

One main challenge when using reinforcement learning based controllers is the transfer from the simulation
based training environment to the real world application. This is also called Sim-to-Real transfer [35]. Even carefully
tuned simulations will always contain small deviations from the real system. The RL algorithm learns to make use of
these simulation inaccuracies and the application in the real world may fail due to unforeseen input values. Domain
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randomization can help to overcome the Sim-to-Real gap [36, 37]. Simulation parameters, like friction, delays, tem-
peratures or pressure loss are varied during the training process. In this way the robustness of the policy concerning
changes in the environment is increased, as the real environment becomes a subset of the randomized simulation. The
intervals in which the parameters are randomized have to be chosen wisely. Large randomization intervals massively
increases the training effort while narrowly defined randomization intervals may exclude the areas relevant for the real
application. For the cold gas set up described in this paper, it was found that the speed of the control valves as well as
calculating correct pressure losses in the system are the most challenging parts of the simulation. Hence valve speed
and the length of the feeding lines in the simulation was used for randomization. The length of each simulated pipe
in the feeding line is multiplied by a factor (interval see Tab. 3) randomly changing after each episode and therefore
varying the pressure loss in the feeding lines. The valve speed is varied in the interval given in Tab 3. The random-
ization is applied in 5 levels, depending on the training progress. In the first level, no randomization is applied and the
simulation is used in its baseline configuration. In the following levels, the interval for the two randomized variables is
increased gradually. The condition for the rise in a new level, is to reach a threshold reward value in four consecutive
episodes. The threshold reward was set to 2000.

During training one episode comprises 40 s simulation time. During simulation every 10 s the feeding line
pressure P_FDL, feeding line temperature T_FDL as well as the desired thrust chamber pressure P_S OLL is changed
randomly in the given limits with a equal distribution (compare Tab. 3). Input values are rounded to integers or one
decimal respectively. Every 5 episodes the target pressure is following a constantly changing trajectory with different
feeding line pressure respectively. This should enable the controller to set different set points as well as to follow
a given trajectory. Sensor noise is added to all variables in the observation space with a Gaussian distribution with
standard variation of σ = 1. The noise is multiplied with 0.5 % of the sensor value and added to the latter.

3. Simulative Analysis

To analyze the control behavior of the neural network after the training is completed, simulations are conducted. The
NN has to control the thrust chamber pressure via interaction with the EcosimPro/ESPSS simulation model. 4800
simulations were conducted to systematically analyze the performance in the training area. Feeding line pressure was
increased in 0.5 bar steps from 60 bar to 90 bar. Target pressure was simulated in a interval from 5 bar to 9 bar with steps
of 0.05 bar each. Thereby the entire operating envelope is covered with a fine resolution. The evaluation simulations
were carried out for a run time of 10 s starting always from 10 % valve opening. According to the definition of the
reward function, the maximum possible reward value for 100 timesteps would be 10000. As the valve needs up to 2.3 s
to open completely, a realistic value for a perfect run is in the order of 8000. The result can be seen in Fig. 3 and Fig.
4.
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Figure 3: Reward achieved in simulation for different set points

The areas marked with yellow color in Fig. 3 represent set points with a high reward achieved. This means the
controller was able to set the chamber pressure to the correct target value. While in the black areas the reward is low
and as a consequence the controller failed to set the desired pressure. Both areas on the top left and the lower right
where the controller failed are tied to physical limitations of the test set up. For a given feeding line pressure due to
pressure losses in the system, only a limited thrust chamber pressure can be achieved at completely opened control

6

DOI: 10.13009/EUCASS2023-639



RL-BASED THRUST-CHAMBER PRESSURE CONTROLLER

valve. This is the case for the dark area in the top left side of Fig. 3. For example at 60 bar feeding line pressure, only
6 bar chamber pressure are possible. Therefor the higher operating points are out of scope. The limit in the lower right
in Fig 3 can be lead back to a limitation of a minimum opening of the control valve to 10 %. High feeding line pressures
would require control valve positions below 10 % to reach low target chamber pressures. The reason for introducing a
limit at the lower boundary of the control valve was due to high inaccuracies if the control valve is operated at lower
opening levels.

It can be seen that within the physical boundary the controller is able reach a constantly high reward and therefor
small deviations at all tested set points in the chosen resolution between 60 bar and 90 bar feeding line pressure and
5 bar and 9 bar chamber pressure are accomplished.

Fig. 4 allows a more detailed analysis of the controller behavior.
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Figure 4: Simulation analysis

Fig 4a shows the settling time in dependence of the desired chamber pressure at four different feeding line
pressures. It can be seen that the settling time rises for higher target pressures, which is a result of the required higher
opening of the control valve. Curves representing lower feeding line pressures resulting in higher settling times for
the same desired pressure. This is because for the same chamber pressure at a lower feeding line pressure the control
valve has to be opened further. At the upper right end of each line, the set point can no longer be reached du to
limited feeding line pressure and the valve being already fully open. Therefore the settling time grows to infinity. The
maximum settling time in the controllable area of about 2.4 s corresponds to the opening time of the valve, which is also
2.3 s. So the controller is able to set the target pressure in the minimum possible settling time. The linear progression
of the curves in the controllable area is a result of the linear transfer function of the control valve.

Fig 4b represents the mean thrust chamber pressure in dependence of the desire chamber pressure. For the
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controllable area this is a straight line, which indicates that the target pressure equals the simulated pressure set by the
controller. For higher target pressures at a specific point each curve instantly drops to a lower value. The controller
closes the control valve to the lower limitation (10 %) when it is no longer possible to reach the desired pressure. For
higher feeding line pressures, the drop occurs at higher target pressures and results also in a higher remaining pressure
in the thrust chamber. This behavior can be problematic. If the desired pressure is too high for the physical limits of
the system, the highest possible pressure should be set and the valve should be completely opened. This behavior is
probably attributed to the choice of the reward function. Since the achievable pressure is always far away from the
desired pressure only negative reward with almost no gradient information is given, independent on the actual pressure.
Therefore, for the controller it is beneficial to not move the control valve at all to avoid punishment for valve movement.
This should be addressed via changing the reward function in future applications. For higher feeding line pressures
(80 and 90 bar), as already described in Fig 3, the low target pressures can not be reached, as the minimum opening of
10 % results in higher thrust chamber pressures.

Fig 4c represents the overshoot in pressure during the settling time. It can be seen, that for the controllable area
nearly no overshoot can be observed. The lines representing 80 bar and 90 bar feeding line pressure have a peak for
low desired chamber pressure, which is a result of the inability to reach this pressures given the physical limits of the
system.

Fig 4d shows the root mean squared error (RMSE) for the different set points in bar. The RMSE in the con-
trollable area is in the order of 0.01 bar and therefor well within the target accuracy of 0.1 bar defined by the reward
function. For areas outside the controllable region the root mean squared error rises.

All simulations shown in Fig. 4 and Fig.3 were run with the same baseline simulation set up. Domain ran-
domization was used in training, but not for evaluation. In order to test the robustness of the controller for changing
environmental behavior a Monte Carlo simulation with 5000 sample simulations is implemented. The result is shown
in Fig. 5.
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Figure 5: Result of Monte Carlo simulation

The following parameters are changed randomly with equal distribution during the MC simulation in the given
ranges in Tab. 3: Feeding line pipe length, valve speed, feeding line temperature, feeding line pressure P_FDL,
desired pressure P_S OLL, sensor noise. This analysis reveals how the controller behaves under changing environment-
conditions, e.g. when being transferred to the real test facility. Sensor noise was added between 0.1 % and 1 % intensity,
unlike given in Tab. 3. For the Mote Carlo simulation only operating points inside the controllable area (where the
controller reached a high reward in the baseline simulation, compare Fig. 3) were chosen. The Monte Carlo analysis
shows that the vast majority of 4388 simulations lead to a reward of more than 6000. In 1749 of the simulations the
reward was higher than 8200. However in some of the simulations the controller failed to achieve the desired chamber
pressure, as can be seen by a negative or very low positive reward. In total 331 simulations lead to a negative reward. It
was found, that simulations resulting in a negative reward are on the boundary of the controllable area. It is assumed,
that with changing for example the pressure loss or temperature a set point which was under baseline conditions inside
the controllable area, moved outside and can no longer be controlled by the controller due to physical limits of the
system.

As last step, the controller was tested following a predefined trajectory of the chamber pressure at constant
feeding line pressure. The trajectory contains different step changes as well as sinus and linear change in the desired
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chamber pressure. The simulation was conducted with a constant feeding line pressure of 80 bar. The result can be seen
in Fig. 6. The target trajectory is marked with dashed line, while the simulated controlled chamber pressure is shown
as solid line. The controller was able to follow the trajectory with a root mean squared error of 0.36 bar. The slow
settling time for the larger set point changes is a result of the slow valve speed. Nearly no overshoot can be observed.
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Figure 6: Simulated chamber pressure following a predefined trajectory

4. Experimental Analysis

In total 142 steady state experiments are used for the experimental investigation of the controller performance. Ad-
ditionally one test following a trajectory is presented. Experiments are conducted at M11.5 test facility in Lampold-
shausen [23, 24].

A characteristic pressure plot of one steady state experiment is given in Fig. 7. Data acquisition starts at t = 0
with the experiment time t. 4.3 s after begin, the automatic valve is opened, and nitrogen starts flushing the thrust
chamber. At the beginning of each experiment the control valve is set to 10 % open. After opening of the automatic
valve there is a 5 s wait to establish steady flow conditions. In this way equal starting conditions for every experiment
are guaranteed. When the flow is established 10 s after the beginning, the neural network takes control and changes the
chamber pressure to the desired value, in this case 8 bar. Due to limited valve speed in this experiment it takes 2.2 s to
reach the set point. No overshoot can be observed. After 21 s the experiment is over and the control valve is opened
completely, to release remaining nitrogen in the feeding lines. This is the reason for the pressure peak at the end of the
experiment before the automatic valve is closed after 22 s.
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Figure 7: Thrust chamber pressure plot for a experiment with 80 bar
feeding line pressure and a target pressure of 8 bar

9

DOI: 10.13009/EUCASS2023-639



RL-BASED THRUST-CHAMBER PRESSURE CONTROLLER

142 of this test similar to the one described above have been conducted with different feeding line pressures and
different target chamber pressures. The results are presented in Fig 8.
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(c) Settling time
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(d) Standard variation in thrust chamber pressure
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(e) Overshoot in thrust chamber pressure

Figure 8: Experimental results
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In this plots every hexagon represents one experiment. On the horizontal axis the feeding line pressure and on the
vertical axis the desired chamber pressure is shown. Therefore, a hexagon at the same spot always represents the same
experiment. The color of the hexagon labels the magnitude of the evaluated variable for the respective experiment.
All variables are calculated for the time interval the neural network takes over control (t = 10 s) until the end of the
experiment (t = 22 s). Fig.8a indicates the calculated reward achieved in the experiments. The result is similar to
the simulative evaluation (see Fig3). Inside the controllable area high reward values are obtained. Control limitation
is given for low and high target pressures for minimum and maximum vale opening respectively. The limits can be
seen by the black hexagons marking experiments resulting in a low reward. The physical limits of the system in the
experiment are the same as in the simulation. In this cases the target pressure could not be set. Once a set point could
not be reached the feeding line pressure was changed. As the experimental results were promising, the controller was
also tested outside the training area. The controller was trained in simulation for feeding line pressures between 60 bar
and 90 bar and target pressures from 5 bar to 9 bar. However also for feeding line pressures as low as 20 bar and up to
100 bar successful control results were observed. For lower feeding line pressures the possible target pressure is also
reduced. Obviously, the neural network extrapolated the successful control policy also for other operating envelopes.
There is no forecast about the control-quality outside the operating points used in training. Therefor this result has to
be evaluated carefully before use in operation.

Fig. 8b shows the root mean squared error of the chamber pressure for each experiment in bar. Interestingly a
slight decrease of RMSE for higher target pressures can be seen. Which leads to the assumption that the stationary
control deviation for higher set points is lower. However, all experiments within the controllable area resulted in a
RMSE not higher than 0.2 bar.

Fig. 8c shows the settling time. It is defined as time until only deviations of less than 10 % of the desired
pressure arise. For higher target pressures the settling time grows, as the valve needs to be opened further. Similar to
the simulative results the settling time in the controllable areas is as low as possible with the given speed of the control
valves. For set points outside the controllable area no settling time can be calculated. They are marked with settling
time zero. Some experiments at the border of the controllable area show larger settling times.

In Fig. 8d the standard deviation of the chamber pressure during the stationary time in the experiments is shown.
Standard deviation is a measure for deviations and oscillations during the steady state operation. With less than 0.1 bar
in the controllable area fluctuations around the target pressure are low.

In Fig.8e the color-map represents the overshoot that was observed during the settling phase of the chamber
pressure. The observed overshoot for lower target pressures is higher while for high desired pressures no overshoot can
be observed.

Concluding Fig. 8 it can be seen that for the relevant target area between 60 bar and 90 bar the controller is
successful in changing and holding the chamber pressure to the required set point. While acting with fast settling
times, low overshoot, low fluctuations and low derivations from the set point can be seen.

In order to test not only steady state performance of the neural network based controller, the control performace
is tested following the given reference trajectory. Fig. 9 shows the measured thrust chamber pressure, corresponding
to the simulation shown in Fig. 6. It can be seen that the controller was able to follow the trajectory. However, in
comparison to the steady state experiments and to the simulative evaluation of the trajectory, more fluctuations and
higher overshoot during the change of operating points can be seen. The long settling time for larger set point changes
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Figure 9: Chamber pressure following a predefined trajectory
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is a result of the slow valves used for the experiments. The root mean squared error is calculated to 1.15 bar. This
comparably high value is partly a result of the slow valves resulting in high absolute errors for long time during the
long settling time. However the root mean squared error of the full trajectory in the experiment is higher than in the
simulation. The controller performance in experiment following the trajectory is, despite using domain randomization,
worse than in the simulation.

5. Conclusion and Outlook

A neural network trained with the reinforcement learning algorithm SAC [30] is used as chamber pressure controller
for a nitrogen cold gas thruster. The controller was analyzed in simulation and experiment. Within the physical limits
of the system the controller showed satisfying behavior, meeting the requirements of less than 0.1 bar steady state
deviation from the set point, nearly no overshoot and a settling time, as fast as the system allows. The controller
can be transferred from the simulation to the experiment and also in the real test set up the controller showed good
performance. It was also shown that the controller is also able to control the thruster far outside the operating points that
were used for training. The controller is able to follow a trajectory that was unknown during training. The trajectory
contains different set point changes, linear and sinus pressure changes.

In future this control method will be applied to a nitrous oxide/ethane bipropellant system and hotfire experiments
will be conducted. Several challenges come up in comparison to the cold gas experiments described in this paper.
The controller has to regulate chamber pressure and mixture ratio independently. The combustion introduces higher
roughness, sensor noise and the behavior of the thruster changes depending on the chamber temperature. Faster and
more accurate, in house developed electronic control valves will be used in the future experiments to reduce the settling
time. In a bipropellant set-up this method has to prove its suitability as rocket engine controller. It will also be
possible to test the introduction of different secondary boundaries in the control-law as for example a limit in the wall
temperature at a given thrust. Further research is needed to investigate the use of machine learning and neural networks
as control method. A direct comparison with other established control mechanisms is desirable to find advantages and
disadvantages of the respective method.
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