elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Bayesian Approach with Prior Mixed Strategy Nash Equilibrium for Vehicle Intention Prediction

Lucente, Giovanni und Dariani, Reza und Schindler, Julian und Ortgiese, Michael (2023) A Bayesian Approach with Prior Mixed Strategy Nash Equilibrium for Vehicle Intention Prediction. Automotive Innovation. Springer Nature. doi: 10.1007/s42154-023-00229-0. ISSN 2096-4250.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://link.springer.com/article/10.1007/s42154-023-00229-0

Kurzfassung

The state-of-the-art technology in the field of vehicle automation will lead to a mixed traffic environment in the coming years where Connected and Automated Vehicles (CAVs) have to interact with Human-Driven ones (HVs). In this context, it is necessary to have intention prediction models with the capability of forecasting how the traffic scenario is going to evolve with respect to the physical state of vehicles, the possible maneuvers and the interactions between the traffic participants within the seconds to come. This article presents a Bayesian approach for vehicle intention forecasting, proposing as prior estimate a game-theoretic framework in the form of a Mixed Strategy Nash Equilibrium (MSNE) to model the reciprocal influence between traffic participants. The likelihood is then computed based on the Kullback-Leibler divergence. The game is modeled as a static nonzero-sum polymatrix game with individual preferences, a well known strategic game. Finding the MSNE for these games is in the PPAD \ PLS complexity class, with polynomial-time tractability. The approach shows good results in simulation in the long term horizon (10s), with its computational complexity allowing for online applications.

elib-URL des Eintrags:https://elib.dlr.de/197554/
Dokumentart:Zeitschriftenbeitrag
Titel:A Bayesian Approach with Prior Mixed Strategy Nash Equilibrium for Vehicle Intention Prediction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lucente, GiovanniGiovanni.Lucente (at) dlr.dehttps://orcid.org/0000-0002-7844-853X143250348
Dariani, RezaReza.Dariani (at) dlr.dehttps://orcid.org/0000-0002-1091-8793NICHT SPEZIFIZIERT
Schindler, Julianjulian.schindler (at) dlr.dehttps://orcid.org/0000-0001-5398-8217NICHT SPEZIFIZIERT
Ortgiese, Michaelmichael.ortgiese (at) dlr.dehttps://orcid.org/0000-0003-4616-7327NICHT SPEZIFIZIERT
Datum:22 August 2023
Erschienen in:Automotive Innovation
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s42154-023-00229-0
Verlag:Springer Nature
ISSN:2096-4250
Status:veröffentlicht
Stichwörter:Vehicle Intention Prediction · Trajectory Prediction · Bayesian Approach · Mixed Strategy Nash Equilibrium
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - NGC KoFiF (alt)
Standort: Berlin-Adlershof , Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik
Institut für Verkehrssystemtechnik > Kooperative Systeme, BS
Institut für Verkehrssystemtechnik > Administration TS, BA
Hinterlegt von: Lucente, Giovanni
Hinterlegt am:29 Sep 2023 14:05
Letzte Änderung:26 Mär 2024 12:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.