Köhler, Tobias Andreas and Song, Buchao and Bergmann, Jean Pierre and Peters, Diana (2023) Geometric feature extraction in manufacturing based on a knowledge graph. Heliyon. Elsevier. doi: 10.1016/j.heliyon.2023.e19694. ISSN 2405-8440.
PDF
- Published version
3MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S2405844023069025?via%3Dihub
Abstract
In times of global crises, the resilience of production chains is becoming increasingly important. If a supply chain is interrupted, a cost-effective solution must be established quickly. In the context of Industry 4.0, the concept of smart manufacturing offers a solution for fast and automated decision-making in production planning. The core idea of smart manufacturing is the digitalization of the product life cycle and the linking of individual phases of this cycle. Computer Aided Process Planning (CAPP) plays an important role as the connecting element between design and manufacturing. An important prerequisite for CAPP is the automated analysis of 3D models of components. The aim of this work is the development of an automatic feature recognition (AFR) -method to recognize geometric manufacturing features and their properties from 3D-models and then store them in a knowledge base. In that way, the result of the design can be automatically analysed and compared with manufacturing information afterwards in order to achieve an automated process planning. Geometric and topological information of a 3D model (STEP-AP242 format) generated by CAD systems is extracted by a Python-script developed and stored in an ontology-based knowledge base. The extracted product data is analysed using a Python-script to identify manufacturing features. To provide a comprehensive extensibility of the model, geometric features are defined according to a layered and hierarchical structure.
Item URL in elib: | https://elib.dlr.de/197524/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Geometric feature extraction in manufacturing based on a knowledge graph | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | September 2023 | ||||||||||||||||||||
Journal or Publication Title: | Heliyon | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1016/j.heliyon.2023.e19694 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 2405-8440 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Knowledge graph, Feature technology, Ontology, Manufacturing, Geometry analysis | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Digital production techniques for aerospace | ||||||||||||||||||||
Location: | Jena | ||||||||||||||||||||
Institutes and Institutions: | Institute of Data Science > Data Management and Enrichment | ||||||||||||||||||||
Deposited By: | Köhler, Tobias Andreas | ||||||||||||||||||||
Deposited On: | 06 Oct 2023 11:51 | ||||||||||||||||||||
Last Modified: | 15 Nov 2023 09:53 |
Repository Staff Only: item control page