elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Geometric feature extraction in manufacturing based on a knowledge graph

Köhler, Tobias Andreas und Song, Buchao und Bergmann, Jean Pierre und Peters, Diana (2023) Geometric feature extraction in manufacturing based on a knowledge graph. Heliyon. Elsevier. doi: 10.1016/j.heliyon.2023.e19694. ISSN 2405-8440.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2405844023069025?via%3Dihub

Kurzfassung

In times of global crises, the resilience of production chains is becoming increasingly important. If a supply chain is interrupted, a cost-effective solution must be established quickly. In the context of Industry 4.0, the concept of smart manufacturing offers a solution for fast and automated decision-making in production planning. The core idea of smart manufacturing is the digitalization of the product life cycle and the linking of individual phases of this cycle. Computer Aided Process Planning (CAPP) plays an important role as the connecting element between design and manufacturing. An important prerequisite for CAPP is the automated analysis of 3D models of components. The aim of this work is the development of an automatic feature recognition (AFR) -method to recognize geometric manufacturing features and their properties from 3D-models and then store them in a knowledge base. In that way, the result of the design can be automatically analysed and compared with manufacturing information afterwards in order to achieve an automated process planning. Geometric and topological information of a 3D model (STEP-AP242 format) generated by CAD systems is extracted by a Python-script developed and stored in an ontology-based knowledge base. The extracted product data is analysed using a Python-script to identify manufacturing features. To provide a comprehensive extensibility of the model, geometric features are defined according to a layered and hierarchical structure.

elib-URL des Eintrags:https://elib.dlr.de/197524/
Dokumentart:Zeitschriftenbeitrag
Titel:Geometric feature extraction in manufacturing based on a knowledge graph
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Köhler, Tobias AndreasTobias.Koehler (at) dlr.dehttps://orcid.org/0000-0003-0567-6934NICHT SPEZIFIZIERT
Song, Buchaobuchao.song (at) tu-ilmenau.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bergmann, Jean Pierrejeanpierre.bergmann (at) tu-ilmenau.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Peters, DianaDiana.Peters (at) dlr.dehttps://orcid.org/0000-0002-5855-2989NICHT SPEZIFIZIERT
Datum:September 2023
Erschienen in:Heliyon
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.heliyon.2023.e19694
Verlag:Elsevier
ISSN:2405-8440
Status:veröffentlicht
Stichwörter:Knowledge graph, Feature technology, Ontology, Manufacturing, Geometry analysis
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Digitale Produktionstechniken für die Raumfahrt
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Datenmanagement und -aufbereitung
Hinterlegt von: Köhler, Tobias Andreas
Hinterlegt am:06 Okt 2023 11:51
Letzte Änderung:15 Nov 2023 09:53

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.