elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Quantum Transfer Learning for Real-World, Small, and High-Dimensional Remotely Sensed Datasets

Otgonbaatar, Soronzonbold und Schwarz, Gottfried und Datcu, Mihai und Kranzlmüller, Dieter (2023) Quantum Transfer Learning for Real-World, Small, and High-Dimensional Remotely Sensed Datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, Seiten 9223-9230. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3316306. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://ieeexplore.ieee.org/document/10253962

Kurzfassung

Quantum machine learning (QML) networks promise to have some computational (or quantum) advantage for classifying supervised datasets (e.g., satellite images) over some conventional deep learning (DL) techniques due to their expressive power via their local effective dimension. There are, however, two main challenges regardless of the promised quantum advantage: 1) Currently available quantum bits (qubits) are very small in number, while real-world datasets are characterized by hundreds of high-dimensional elements (i.e., features). Additionally, there is not a single unified approach for embedding real-world high-dimensional datasets in a limited number of qubits. 2) Some real-world datasets are too small for training intricate QML networks. Hence, to tackle these two challenges for benchmarking and validating QML networks on real-world, small, and high-dimensional datasets in one-go, we employ quantum transfer learning composed of a multi-qubit QML network, and a very deep convolutional network (a with VGG16 architecture) extracting informative features from any small, high-dimensional dataset. We use real-amplitude and strongly-entangling N-layer QML networks with and without data re-uploading layers as a multi-qubit QML network, and evaluate their expressive power quantified by using their local effective dimension; the lower the local effective dimension of a QML network, the better its performance on unseen data. Our numerical results show that the strongly-entangling N-layer QML network has a lower local effective dimension than the real-amplitude QML network and outperforms it on the hard-to-classify three-class labelling problem. In addition, quantum transfer learning helps tackle the two challenges mentioned above for benchmarking and validating QML networks on real-world, small, and high-dimensional datasets.

elib-URL des Eintrags:https://elib.dlr.de/197432/
Dokumentart:Zeitschriftenbeitrag
Titel:Quantum Transfer Learning for Real-World, Small, and High-Dimensional Remotely Sensed Datasets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Otgonbaatar, SoronzonboldSoronzonbold.Otgonbaatar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schwarz, GottfriedRemote Sensing Technology Institute (IMF)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiRemote sensing technology institute (IMF)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kranzlmüller, DieterLMU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:18 September 2023
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:16
DOI:10.1109/JSTARS.2023.3316306
Seitenbereich:Seiten 9223-9230
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:quantum transfer learning, quantum machine learning, data re-uploading, Earth observation, remote sensing, image classification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Otgonbaatar, Soronzonbold
Hinterlegt am:05 Okt 2023 11:38
Letzte Änderung:26 Okt 2023 15:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.