Gapp, Sebastian and Merkle, Nina and Henry, Corentin (2023) Satellite Image Augmentation via Seamless Instance Blending for Building Damage Segmentation. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5182-5185. IGARSS 2023, 16.-21. Jul. 2023, USA, Pasadena. doi: 10.1109/IGARSS52108.2023.10282254.
![]() |
PDF
- Only accessible within DLR
695kB |
Official URL: https://2023.ieeeigarss.org/view_paper.php?PaperNum=2510
Abstract
When a natural disaster strikes, humanitarian organizations require a rapid and precise localization of damaged buildings to coordinate rescue missions and allocate relief goods. Current approaches rely on a manual comparison of pre- and post-disaster satellite imagery to generate a reliable damage map for selected areas. The main obstacle to using machine learning methods to automate this time-consuming analysis is the small amount of labeled training data. To generate more diverse datasets, we propose an augmentation procedure to seamlessly insert buildings into optical satellite imagery. We analyzed how different compositions of inserted buildings affect the segmentation of building damage and showed how the proposed augmentation technique can be used to significantly improve the performance of building damage segmentation networks.
Item URL in elib: | https://elib.dlr.de/197268/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Satellite Image Augmentation via Seamless Instance Blending for Building Damage Segmentation | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 16 July 2023 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282254 | ||||||||||||||||
Page Range: | pp. 5182-5185 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Deep Learning, Data Augmentation, Building Damage Assessment, Satellite Images | ||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||
Event Location: | USA, Pasadena | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Dates: | 16.-21. Jul. 2023 | ||||||||||||||||
Organizer: | IEEE | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||
Deposited By: | Gapp, Sebastian | ||||||||||||||||
Deposited On: | 21 Sep 2023 10:03 | ||||||||||||||||
Last Modified: | 26 Oct 2023 15:54 |
Repository Staff Only: item control page