Gapp, Sebastian und Merkle, Nina und Henry, Corentin (2023) Satellite Image Augmentation via Seamless Instance Blending for Building Damage Segmentation. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5182-5185. IGARSS 2023, 2023-07-16 - 2023-07-21, USA, Pasadena. doi: 10.1109/IGARSS52108.2023.10282254.
PDF
- Nur DLR-intern zugänglich
695kB |
Offizielle URL: https://2023.ieeeigarss.org/view_paper.php?PaperNum=2510
Kurzfassung
When a natural disaster strikes, humanitarian organizations require a rapid and precise localization of damaged buildings to coordinate rescue missions and allocate relief goods. Current approaches rely on a manual comparison of pre- and post-disaster satellite imagery to generate a reliable damage map for selected areas. The main obstacle to using machine learning methods to automate this time-consuming analysis is the small amount of labeled training data. To generate more diverse datasets, we propose an augmentation procedure to seamlessly insert buildings into optical satellite imagery. We analyzed how different compositions of inserted buildings affect the segmentation of building damage and showed how the proposed augmentation technique can be used to significantly improve the performance of building damage segmentation networks.
elib-URL des Eintrags: | https://elib.dlr.de/197268/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Satellite Image Augmentation via Seamless Instance Blending for Building Damage Segmentation | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 16 Juli 2023 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282254 | ||||||||||||||||
Seitenbereich: | Seiten 5182-5185 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Deep Learning, Data Augmentation, Building Damage Assessment, Satellite Images | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||
Veranstaltungsort: | USA, Pasadena | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC, R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Gapp, Sebastian | ||||||||||||||||
Hinterlegt am: | 21 Sep 2023 10:03 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags